In [43]:
%%HTML
<img src="home/nati/Pictures/otto_competition.JPG",width=10,height=10>


Exploratory Data Analysis & classification tutorial:

The goals of this tutorial notebook are to: a) introduce you to the process and approach for performing Exploratory Data Analysis (EDA) b) get you train various classifiers and explore their results c) use these trained models to predict the target variable (in this example dataset it is the type of a product)

lets begin with importing some common libraries we discussed about in the previous part.


In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import seaborn as sns

from sklearn.model_selection import train_test_split

my_color_map = ['green','aqua','pink','blue','red','black','yellow','teal','orange','grey']

now lets load our data set for this tutorial: the Otto dataset


In [47]:
tr_data = pd.read_csv('../input/train.csv')
te_data = pd.read_csv('../input/test.csv')
print('train shape is: {} \r\n\ test shape is: {}'.format(tr_data.shape, te_data.shape))


train shape is: (61878, 95) 
\ test shape is: (144368, 94)
CPU times: user 1.42 s, sys: 80 ms, total: 1.5 s
Wall time: 1.5 s

pandas has lots of great features that can help us get insights to the data with very little effort lets begin with exploring some statistics of the numerical features:


In [4]:
tr_data.describe()


Out[4]:
id feat_1 feat_2 feat_3 feat_4 feat_5 feat_6 feat_7 feat_8 feat_9 ... feat_84 feat_85 feat_86 feat_87 feat_88 feat_89 feat_90 feat_91 feat_92 feat_93
count 61878.000000 61878.00000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 ... 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000 61878.000000
mean 30939.500000 0.38668 0.263066 0.901467 0.779081 0.071043 0.025696 0.193704 0.662433 1.011296 ... 0.070752 0.532306 1.128576 0.393549 0.874915 0.457772 0.812421 0.264941 0.380119 0.126135
std 17862.784315 1.52533 1.252073 2.934818 2.788005 0.438902 0.215333 1.030102 2.255770 3.474822 ... 1.151460 1.900438 2.681554 1.575455 2.115466 1.527385 4.597804 2.045646 0.982385 1.201720
min 1.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 15470.250000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 30939.500000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 46408.750000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 ... 0.000000 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
max 61878.000000 61.00000 51.000000 64.000000 70.000000 19.000000 10.000000 38.000000 76.000000 43.000000 ... 76.000000 55.000000 65.000000 67.000000 30.000000 61.000000 130.000000 52.000000 19.000000 87.000000

8 rows × 94 columns

this format is somewhat problematic since:

1) when we scroll aside we notice that not all columns are presented so we cannot explore them

2) the data is very wide and we're not using the screen very efficiently

we can solve the first problem by setting some of pandas display parameters as for the screen usage - we can transpose the resulting dataframe


In [5]:
#set number of rows and columns to see 
pd.options.display.max_rows = 200
pd.options.display.max_columns = 50

#use transposed view of the features
tr_data.describe().T


Out[5]:
count mean std min 25% 50% 75% max
id 61878.0 30939.500000 17862.784315 1.0 15470.25 30939.5 46408.75 61878.0
feat_1 61878.0 0.386680 1.525330 0.0 0.00 0.0 0.00 61.0
feat_2 61878.0 0.263066 1.252073 0.0 0.00 0.0 0.00 51.0
feat_3 61878.0 0.901467 2.934818 0.0 0.00 0.0 0.00 64.0
feat_4 61878.0 0.779081 2.788005 0.0 0.00 0.0 0.00 70.0
feat_5 61878.0 0.071043 0.438902 0.0 0.00 0.0 0.00 19.0
feat_6 61878.0 0.025696 0.215333 0.0 0.00 0.0 0.00 10.0
feat_7 61878.0 0.193704 1.030102 0.0 0.00 0.0 0.00 38.0
feat_8 61878.0 0.662433 2.255770 0.0 0.00 0.0 1.00 76.0
feat_9 61878.0 1.011296 3.474822 0.0 0.00 0.0 0.00 43.0
feat_10 61878.0 0.263906 1.083340 0.0 0.00 0.0 0.00 30.0
feat_11 61878.0 1.252869 3.042333 0.0 0.00 0.0 1.00 38.0
feat_12 61878.0 0.140874 0.567089 0.0 0.00 0.0 0.00 30.0
feat_13 61878.0 0.480979 2.014697 0.0 0.00 0.0 0.00 72.0
feat_14 61878.0 1.696693 3.163212 0.0 0.00 0.0 2.00 33.0
feat_15 61878.0 1.284398 3.862236 0.0 0.00 0.0 1.00 46.0
feat_16 61878.0 1.413459 2.226163 0.0 0.00 0.0 2.00 37.0
feat_17 61878.0 0.366108 1.477436 0.0 0.00 0.0 0.00 43.0
feat_18 61878.0 0.575423 1.335985 0.0 0.00 0.0 1.00 32.0
feat_19 61878.0 0.551699 4.636145 0.0 0.00 0.0 0.00 121.0
feat_20 61878.0 0.471525 1.438727 0.0 0.00 0.0 0.00 27.0
feat_21 61878.0 0.204014 0.696050 0.0 0.00 0.0 0.00 14.0
feat_22 61878.0 0.729969 1.446220 0.0 0.00 0.0 1.00 22.0
feat_23 61878.0 0.142522 0.782979 0.0 0.00 0.0 0.00 64.0
feat_24 61878.0 2.643880 4.629015 0.0 0.00 1.0 3.00 263.0
feat_25 61878.0 1.534520 2.332994 0.0 0.00 1.0 2.00 30.0
feat_26 61878.0 0.563108 1.710305 0.0 0.00 0.0 0.00 33.0
feat_27 61878.0 0.696613 2.873222 0.0 0.00 0.0 0.00 123.0
feat_28 61878.0 0.238970 0.828112 0.0 0.00 0.0 0.00 22.0
feat_29 61878.0 0.275768 1.901294 0.0 0.00 0.0 0.00 69.0
feat_30 61878.0 0.150312 1.640880 0.0 0.00 0.0 0.00 87.0
feat_31 61878.0 0.148680 0.897354 0.0 0.00 0.0 0.00 59.0
feat_32 61878.0 1.043796 2.416849 0.0 0.00 0.0 1.00 149.0
feat_33 61878.0 0.696516 1.310202 0.0 0.00 0.0 1.00 24.0
feat_34 61878.0 0.946411 3.368622 0.0 0.00 0.0 1.00 84.0
feat_35 61878.0 0.666263 3.197965 0.0 0.00 0.0 0.00 105.0
feat_36 61878.0 0.709089 2.555119 0.0 0.00 0.0 1.00 84.0
feat_37 61878.0 0.263632 0.756934 0.0 0.00 0.0 0.00 22.0
feat_38 61878.0 0.582129 1.602579 0.0 0.00 0.0 1.00 39.0
feat_39 61878.0 0.485585 3.298315 0.0 0.00 0.0 0.00 78.0
feat_40 61878.0 1.653059 3.299798 0.0 0.00 0.0 2.00 41.0
feat_41 61878.0 0.303468 1.085672 0.0 0.00 0.0 0.00 36.0
feat_42 61878.0 0.698019 1.961189 0.0 0.00 0.0 1.00 41.0
feat_43 61878.0 0.451146 1.706013 0.0 0.00 0.0 0.00 42.0
feat_44 61878.0 0.560829 1.346090 0.0 0.00 0.0 1.00 34.0
feat_45 61878.0 0.238130 2.587131 0.0 0.00 0.0 0.00 80.0
feat_46 61878.0 0.641375 2.348359 0.0 0.00 0.0 0.00 41.0
feat_47 61878.0 0.249669 1.446203 0.0 0.00 0.0 0.00 47.0
feat_48 61878.0 1.584893 2.577071 0.0 0.00 1.0 2.00 49.0
feat_49 61878.0 0.348314 1.369380 0.0 0.00 0.0 0.00 81.0
feat_50 61878.0 0.324283 1.720470 0.0 0.00 0.0 0.00 73.0
feat_51 61878.0 0.053298 0.513820 0.0 0.00 0.0 0.00 44.0
feat_52 61878.0 0.213485 1.044788 0.0 0.00 0.0 0.00 48.0
feat_53 61878.0 0.442063 2.006485 0.0 0.00 0.0 0.00 53.0
feat_54 61878.0 2.072465 4.113319 0.0 0.00 0.0 2.00 63.0
feat_55 61878.0 0.323120 0.998743 0.0 0.00 0.0 0.00 27.0
feat_56 61878.0 0.303775 1.925806 0.0 0.00 0.0 0.00 62.0
feat_57 61878.0 0.309108 1.082148 0.0 0.00 0.0 0.00 30.0
feat_58 61878.0 0.697970 3.983722 0.0 0.00 0.0 0.00 117.0
feat_59 61878.0 0.388603 2.577693 0.0 0.00 0.0 0.00 97.0
feat_60 61878.0 1.029930 3.028469 0.0 0.00 0.0 0.00 40.0
feat_61 61878.0 0.239746 1.017553 0.0 0.00 0.0 0.00 38.0
feat_62 61878.0 1.187563 2.666742 0.0 0.00 0.0 1.00 56.0
feat_63 61878.0 0.168590 0.946158 0.0 0.00 0.0 0.00 51.0
feat_64 61878.0 1.256796 3.402080 0.0 0.00 0.0 1.00 73.0
feat_65 61878.0 0.222228 0.783052 0.0 0.00 0.0 0.00 38.0
feat_66 61878.0 0.571706 1.361874 0.0 0.00 0.0 1.00 36.0
feat_67 61878.0 2.897653 4.974322 0.0 0.00 1.0 4.00 104.0
feat_68 61878.0 0.392902 1.761054 0.0 0.00 0.0 0.00 109.0
feat_69 61878.0 0.811128 4.111091 0.0 0.00 0.0 0.00 76.0
feat_70 61878.0 0.892789 1.941368 0.0 0.00 0.0 1.00 46.0
feat_71 61878.0 0.319290 1.162443 0.0 0.00 0.0 0.00 31.0
feat_72 61878.0 0.858722 2.411646 0.0 0.00 0.0 1.00 30.0
feat_73 61878.0 0.591050 5.783233 0.0 0.00 0.0 0.00 352.0
feat_74 61878.0 0.579851 3.757822 0.0 0.00 0.0 0.00 231.0
feat_75 61878.0 0.726817 3.200095 0.0 0.00 0.0 0.00 80.0
feat_76 61878.0 0.748457 2.920038 0.0 0.00 0.0 0.00 102.0
feat_77 61878.0 0.124196 0.906621 0.0 0.00 0.0 0.00 29.0
feat_78 61878.0 0.366415 2.778317 0.0 0.00 0.0 0.00 80.0
feat_79 61878.0 0.300446 1.285569 0.0 0.00 0.0 0.00 25.0
feat_80 61878.0 0.698067 2.245671 0.0 0.00 0.0 0.00 54.0
feat_81 61878.0 0.078461 0.461244 0.0 0.00 0.0 0.00 26.0
feat_82 61878.0 0.187983 0.836269 0.0 0.00 0.0 0.00 24.0
feat_83 61878.0 0.496719 2.434921 0.0 0.00 0.0 0.00 79.0
feat_84 61878.0 0.070752 1.151460 0.0 0.00 0.0 0.00 76.0
feat_85 61878.0 0.532306 1.900438 0.0 0.00 0.0 0.00 55.0
feat_86 61878.0 1.128576 2.681554 0.0 0.00 0.0 1.00 65.0
feat_87 61878.0 0.393549 1.575455 0.0 0.00 0.0 0.00 67.0
feat_88 61878.0 0.874915 2.115466 0.0 0.00 0.0 1.00 30.0
feat_89 61878.0 0.457772 1.527385 0.0 0.00 0.0 0.00 61.0
feat_90 61878.0 0.812421 4.597804 0.0 0.00 0.0 0.00 130.0
feat_91 61878.0 0.264941 2.045646 0.0 0.00 0.0 0.00 52.0
feat_92 61878.0 0.380119 0.982385 0.0 0.00 0.0 0.00 19.0
feat_93 61878.0 0.126135 1.201720 0.0 0.00 0.0 0.00 87.0

another great feature of the pandas package is the simplisity of exploring the values distribution of the target variable & for each of the feature


In [6]:
print('the value counts of the target are:')
print(tr_data.iloc[:,-1].value_counts())
print(tr_data.iloc[:,-1].value_counts().plot(kind = 'bar'))


the value counts of the target are:
Class_2    16122
Class_6    14135
Class_8     8464
Class_3     8004
Class_9     4955
Class_7     2839
Class_5     2739
Class_4     2691
Class_1     1929
Name: target, dtype: int64
Axes(0.125,0.125;0.775x0.755)

In [7]:
for i,feat in enumerate(tr_data.columns[1:-1]): #we start from the second feature as the first one is the item id
    print('the value counts of feature {} are:'.format(feat))
    print(tr_data[feat].value_counts())


the value counts of feature feat_1 are:
0     51483
1      5906
2      1829
3       981
4       521
5       471
6       207
7       192
8        71
9        55
22       32
11       24
10       15
13       10
15        8
26        6
19        5
24        5
12        5
28        4
14        4
21        4
23        4
17        4
48        3
16        3
27        3
25        3
39        2
31        2
42        2
43        2
30        2
47        2
56        1
20        1
37        1
34        1
29        1
61        1
32        1
40        1
Name: feat_1, dtype: int64
the value counts of feature feat_2 are:
0     55018
1      4012
2      1215
3       549
4       310
5       170
6       155
7        84
10       60
8        53
9        51
12       41
11       38
14       30
13       17
15       15
16       10
18        8
21        7
17        7
20        5
19        5
25        2
23        2
24        2
26        1
27        1
35        1
36        1
39        1
37        1
22        1
38        1
51        1
41        1
30        1
31        1
Name: feat_2, dtype: int64
the value counts of feature feat_3 are:
0     49295
1      5346
2      1674
3       909
4       643
5       529
6       486
8       381
7       377
9       355
10      332
11      274
12      229
13      198
14      160
15      122
16      118
17       87
18       83
19       51
20       48
22       30
21       25
23       24
24       22
25       12
28       11
26        9
27        8
31        6
30        6
44        3
38        3
36        3
29        3
32        2
37        2
34        2
59        1
64        1
61        1
41        1
35        1
40        1
50        1
49        1
42        1
52        1
Name: feat_3, dtype: int64
the value counts of feature feat_4 are:
0     48448
1      5947
2      2297
3      1258
4       949
5       629
6       493
7       353
8       283
9       199
10      183
11      146
12      111
14       72
13       68
16       53
15       45
18       39
20       35
22       30
17       30
19       18
24       17
30       16
32       15
26       14
21       12
23       12
34       11
25       10
27       10
28        8
33        6
36        6
38        4
40        4
46        4
44        4
42        4
29        3
50        3
56        3
35        3
55        2
31        2
48        2
58        2
57        2
54        2
67        2
41        1
60        1
52        1
68        1
51        1
37        1
70        1
47        1
63        1
Name: feat_4, dtype: int64
the value counts of feature feat_5 are:
0     58907
1      2357
2       342
3       110
4        56
7        23
5        21
6        19
10       14
8        13
9         6
11        5
12        3
19        1
13        1
Name: feat_5, dtype: int64
the value counts of feature feat_6 are:
0     60710
1       883
2       201
3        57
5        14
4        10
10        1
8         1
6         1
Name: feat_6, dtype: int64
the value counts of feature feat_7 are:
0     56443
1      3346
2       905
3       417
4       231
5       146
6        87
7        61
8        57
9        35
10       32
11       22
13       16
12       13
14       12
15       12
18        9
20        6
17        5
19        5
16        4
38        3
21        3
31        2
30        1
22        1
26        1
27        1
29        1
32        1
Name: feat_7, dtype: int64
the value counts of feature feat_8 are:
0     45312
1      9332
2      3485
3      1239
4       749
5       379
6       310
7       188
8       152
9       134
10      107
11       60
12       52
13       52
14       51
15       41
16       32
18       29
17       25
19       22
21       11
20        8
32        8
22        6
39        6
26        5
25        5
40        5
42        5
23        5
36        4
29        4
33        4
41        4
24        4
27        4
38        4
43        4
28        3
30        3
35        3
37        3
75        2
34        2
31        2
45        2
56        2
54        2
48        1
46        1
59        1
52        1
76        1
51        1
57        1
Name: feat_8, dtype: int64
the value counts of feature feat_9 are:
0     49836
1      5476
2      1887
3       668
4       399
14      373
13      357
12      355
11      290
15      236
10      225
16      203
5       183
9       172
17      164
18      146
6       120
19      117
8       104
7       100
20       92
21       78
22       55
23       51
24       43
25       34
27       29
26       28
28       14
29       12
30        8
32        5
34        5
31        5
33        2
43        2
35        1
37        1
38        1
41        1
Name: feat_9, dtype: int64
the value counts of feature feat_10 are:
0     54195
1      4531
2      1526
3       612
4       314
5       193
6       129
7        89
8        62
9        55
10       37
11       32
12       24
13       22
14       17
16        8
15        7
22        6
17        5
19        3
26        2
18        2
20        2
24        2
30        2
25        1
Name: feat_10, dtype: int64
the value counts of feature feat_11 are:
0     45043
1      6703
2      1959
7      1155
8      1134
9       972
6       823
3       765
10      705
5       532
4       486
11      451
12      283
13      181
14      141
16      134
15      110
17       92
18       75
19       61
20       31
21       21
22        9
23        4
24        4
25        2
38        1
26        1
Name: feat_11, dtype: int64
the value counts of feature feat_12 are:
0     55342
1      5279
2       879
3       221
4        76
5        23
6        16
7        12
8         8
10        5
9         4
28        3
17        2
19        2
11        1
12        1
13        1
21        1
25        1
30        1
Name: feat_12, dtype: int64
the value counts of feature feat_13 are:
0     50430
1      6816
2      2163
3       706
4       360
5       326
10      258
11      210
6       128
12       84
7        70
13       54
30       36
8        36
9        34
19       31
14       19
20       12
15       11
17       11
16        9
18        9
25        7
21        7
22        7
23        4
24        4
40        3
33        3
31        3
26        3
37        2
47        2
60        2
50        2
68        1
29        1
28        1
27        1
35        1
36        1
44        1
55        1
41        1
51        1
38        1
39        1
49        1
48        1
72        1
45        1
Name: feat_13, dtype: int64
the value counts of feature feat_14 are:
0     34542
1      9694
2      4693
3      2783
4      2165
5      1634
6      1363
7      1077
8       832
9       648
10      527
11      443
12      294
13      285
14      213
15      168
16      121
17      104
18       97
19       59
20       33
21       31
22       18
23       14
24       12
25       10
26        7
30        5
28        3
33        1
27        1
32        1
Name: feat_14, dtype: int64
the value counts of feature feat_15 are:
0     43770
1      8056
2      3380
3      1916
4       878
5       420
6       332
7       249
18      193
19      191
14      190
21      188
20      186
8       186
17      180
15      174
16      164
22      152
23      152
9       128
13      127
24      127
12      109
10       99
11       95
25       89
26       47
28       36
27       29
29       16
31        7
30        4
32        3
34        2
46        1
33        1
36        1
Name: feat_15, dtype: int64
the value counts of feature feat_16 are:
0     31649
1     10999
2      6652
3      4201
4      2775
5      1797
6      1225
7       808
8       585
9       422
10      285
11      175
12      113
13       85
14       38
15       23
16       11
17       10
18        7
19        5
21        4
20        2
23        2
26        1
37        1
22        1
25        1
27        1
Name: feat_16, dtype: int64
the value counts of feature feat_17 are:
0     51748
1      6086
2      1881
3       762
4       451
5       249
6       160
7       103
8        99
9        77
10       53
11       47
12       24
14       16
19       13
13       13
15       12
18        9
17        7
26        6
31        5
30        5
22        5
27        5
16        5
33        4
29        4
23        3
21        3
25        3
35        3
20        3
24        3
37        2
34        2
28        2
41        2
32        1
36        1
43        1
Name: feat_17, dtype: int64
the value counts of feature feat_18 are:
0     44037
1     10021
2      3876
3      1766
4       935
5       442
6       307
7       166
8        99
10       80
9        45
12       21
11       21
14       13
18       12
16        8
13        6
15        4
20        4
21        3
19        2
27        2
29        1
17        1
22        1
23        1
24        1
25        1
32        1
30        1
Name: feat_18, dtype: int64
the value counts of feature feat_19 are:
0      56122
1       3375
2        841
3        331
4        187
5        126
6         75
7         52
8         43
10        42
9         31
24        23
11        22
20        22
14        21
15        21
30        21
23        19
35        19
27        19
26        18
29        18
12        17
17        17
28        16
21        15
34        14
31        13
19        13
46        13
25        12
16        12
32        12
13        12
22        12
33        11
18         9
37         9
59         9
69         7
39         7
38         7
75         7
36         7
65         7
43         6
48         6
68         6
53         6
51         6
86         6
66         6
73         5
74         5
54         5
40         5
61         5
70         5
41         5
60         4
71         4
76         4
85         4
67         4
97         4
64         4
98         3
93         3
44         3
82         3
81         3
89         3
45         3
52         3
114        3
63         3
56         2
87         2
55         2
84         2
90         2
50         2
95         2
42         2
80         1
49         1
57         1
96         1
88         1
104        1
58         1
72         1
94         1
121        1
116        1
77         1
110        1
92         1
83         1
99         1
102        1
91         1
47         1
79         1
105        1
Name: feat_19, dtype: int64
the value counts of feature feat_20 are:
0     49044
1      7218
2      2480
3      1092
4       615
5       401
6       262
7       189
8       138
9       104
10       84
11       58
12       46
13       39
15       28
14       27
17       16
16       11
18        6
19        6
20        3
22        3
24        3
23        2
26        1
21        1
27        1
Name: feat_20, dtype: int64
the value counts of feature feat_21 are:
0     54544
1      4384
2      1740
3       647
4       287
5       131
6        84
7        26
8        16
10        6
9         6
13        3
12        2
14        1
11        1
Name: feat_21, dtype: int64
the value counts of feature feat_22 are:
0     40873
1     10202
2      5125
3      2584
4      1427
5       661
6       375
7       225
8       150
9        69
13       49
10       48
11       30
12       25
15       10
14        8
16        7
18        7
20        1
17        1
22        1
Name: feat_22, dtype: int64
the value counts of feature feat_23 are:
0     57470
1      2556
2       901
3       434
4       214
5       101
6        68
7        39
8        33
9        17
10       12
14        5
15        5
11        4
18        4
12        3
13        3
16        2
17        2
21        1
19        1
20        1
64        1
54        1
Name: feat_23, dtype: int64
the value counts of feature feat_24 are:
0      22077
1      11905
2       8694
3       4867
4       3660
5       2242
6       1747
7       1282
8       1056
9        819
10       593
11       483
12       354
13       286
14       284
16       173
15       166
19       123
18       116
17       115
20        98
21        97
24        67
22        62
23        59
25        54
27        47
26        40
28        35
29        27
30        26
35        25
32        24
31        20
34        18
36        18
33        16
44        10
42         8
39         8
37         8
40         7
38         7
43         6
46         6
47         6
56         5
41         4
45         4
51         4
53         3
49         2
50         2
59         1
263        1
80         1
137        1
57         1
52         1
62         1
109        1
94         1
158        1
64         1
48         1
63         1
Name: feat_24, dtype: int64
the value counts of feature feat_25 are:
0     27295
1     14799
2      7088
3      4075
4      2865
5      1846
6      1119
7       789
8       554
9       432
10      312
11      189
12      157
13      111
14       79
15       48
16       44
17       24
18       23
19        9
20        6
21        5
23        3
30        2
28        1
22        1
26        1
27        1
Name: feat_25, dtype: int64
the value counts of feature feat_26 are:
0     49180
1      5871
2      2553
3      1367
4       891
5       554
6       368
7       256
8       209
9       141
10      117
11       91
12       59
13       56
14       38
15       28
16       22
17       21
18       11
19        8
20        8
24        5
25        5
21        4
23        4
22        3
26        3
30        2
28        1
33        1
27        1
Name: feat_26, dtype: int64
the value counts of feature feat_27 are:
0      52827
1       2883
2       1721
3        932
4        650
5        453
6        379
7        318
8        276
9        210
10       201
11       151
12       141
13       102
14        92
16        70
15        52
17        49
18        43
20        41
19        32
21        28
22        26
23        22
25        17
24        17
28        15
31        12
27        11
26        11
32        10
33         8
30         8
29         8
36         7
34         6
35         6
47         5
39         5
37         5
43         4
40         3
44         3
38         3
50         2
41         2
58         2
42         2
108        1
123        1
49         1
48         1
45         1
53         1
52         1
Name: feat_27, dtype: int64
the value counts of feature feat_28 are:
0     54009
1      4555
2      1701
3       752
4       409
5       187
6       119
7        52
8        36
9        24
10       15
11        4
14        4
13        3
12        2
20        1
15        1
16        1
17        1
18        1
22        1
Name: feat_28, dtype: int64
the value counts of feature feat_29 are:
0     54521
1      5169
2      1085
3       405
4       163
5        78
6        76
8        54
9        42
7        37
10       28
11       22
13       22
28       20
27       16
16       15
12       13
29       13
18       10
26       10
14        9
30        7
15        6
25        6
58        4
32        4
64        4
57        3
17        3
22        3
65        3
33        3
47        3
34        2
66        2
31        2
67        2
35        1
62        1
49        1
68        1
69        1
38        1
23        1
54        1
21        1
43        1
44        1
50        1
63        1
Name: feat_29, dtype: int64
the value counts of feature feat_30 are:
0     56951
1      3925
2       504
3       291
4        55
5        35
6        28
7        15
11        7
80        4
8         4
9         3
12        3
14        3
63        3
13        2
53        2
60        2
59        2
58        2
10        2
47        2
48        2
49        2
20        2
19        2
17        1
32        1
64        1
62        1
30        1
34        1
61        1
29        1
51        1
26        1
57        1
82        1
42        1
56        1
87        1
84        1
45        1
77        1
23        1
46        1
15        1
81        1
79        1
31        1
21        1
Name: feat_30, dtype: int64
the value counts of feature feat_31 are:
0     57339
1      2880
2       855
3       335
4       165
5        60
6        58
8        33
10       24
7        23
12       21
9        13
14       12
16       12
11       10
18        6
13        6
20        6
15        4
22        3
17        2
19        2
24        2
27        2
40        1
59        1
26        1
32        1
30        1
Name: feat_31, dtype: int64
the value counts of feature feat_32 are:
0      41962
1       7521
2       4123
3       2049
7       1318
4       1235
6       1108
5        840
8        584
9        367
10       307
11       168
12       142
13        50
14        25
15        24
16        13
17         6
19         5
18         4
29         3
34         2
44         2
28         2
20         2
21         2
30         1
35         1
65         1
91         1
59         1
56         1
36         1
149        1
41         1
53         1
52         1
71         1
76         1
31         1
Name: feat_32, dtype: int64
the value counts of feature feat_33 are:
0     39783
1     12020
2      5201
3      2300
4      1142
5       596
6       339
7       201
8       115
9        79
10       50
11       30
13        7
12        5
15        3
16        3
23        1
17        1
19        1
24        1
Name: feat_33, dtype: int64
the value counts of feature feat_34 are:
0     46172
1      9031
2      2432
3       752
4       403
5       295
6       273
8       221
9       217
7       216
10      212
11      184
12      174
13      166
14      136
15      110
16       96
17       88
18       76
19       72
20       67
22       59
25       46
21       45
24       43
26       40
23       40
28       28
27       26
30       20
32       18
29       17
31       14
38       13
33       12
35        9
34        9
39        8
37        7
42        5
36        5
40        5
47        4
41        3
44        3
43        2
48        2
84        1
46        1
Name: feat_34, dtype: int64
the value counts of feature feat_35 are:
0      48050
1       7526
2       2729
3       1264
4        667
5        415
6        257
7        189
8        119
9         89
10        69
12        36
11        30
13        30
14        28
26        26
16        25
18        22
22        20
28        19
20        19
32        18
15        16
24        15
36        14
30        13
34        11
17        11
19         8
42         7
40         7
56         7
52         7
38         7
55         6
50         6
60         6
44         6
23         5
54         5
58         5
48         4
21         4
39         3
33         3
31         3
25         3
46         3
62         3
47         3
53         3
70         2
61         2
64         2
29         2
66         2
45         2
43         2
73         2
80         2
41         2
82         1
27         1
105        1
96         1
92         1
65         1
59         1
72         1
81         1
90         1
89         1
57         1
68         1
100        1
86         1
49         1
78         1
Name: feat_35, dtype: int64
the value counts of feature feat_36 are:
0     46355
1      8041
2      3554
3      1243
4       715
5       380
6       290
7       190
8       179
9       142
10      106
11       78
12       66
14       61
16       54
13       48
15       42
20       32
17       32
18       30
22       28
19       27
24       22
23       17
21       14
25       12
27       11
32       10
31       10
30        8
28        8
29        7
26        7
44        5
34        5
49        4
43        4
35        4
37        4
33        3
53        3
56        2
36        2
57        2
54        2
47        2
41        2
42        2
50        2
45        2
46        2
38        1
40        1
84        1
52        1
60        1
48        1
61        1
Name: feat_36, dtype: int64
the value counts of feature feat_37 are:
0     51480
1      7068
2      2003
3       723
4       330
5       129
6        71
7        30
8        19
9         5
10        5
11        5
14        4
22        2
20        1
12        1
17        1
18        1
Name: feat_37, dtype: int64
the value counts of feature feat_38 are:
0     45783
1      8876
2      3279
3      1552
4       836
5       433
6       331
7       185
8       148
9        86
12       74
10       73
11       57
14       31
13       25
15       20
17       16
16       14
18       12
19        9
20        6
21        5
28        4
22        3
30        3
38        2
23        2
24        2
26        2
27        2
29        2
36        1
25        1
35        1
34        1
39        1
Name: feat_38, dtype: int64
the value counts of feature feat_39 are:
0     53604
1      4804
2      1580
3       575
4       327
5       189
6        97
8        67
7        59
10       33
11       30
9        26
14       23
13       23
12       21
15       20
33       17
16       17
32       15
30       15
35       15
18       15
26       14
17       13
21       13
25       12
22       11
20       11
24       10
36       10
31       10
19        9
38        9
37        9
23        9
27        9
34        8
28        8
56        8
29        6
52        6
48        6
58        6
49        6
41        5
53        5
51        5
50        5
40        5
47        5
43        5
44        4
39        4
59        4
62        4
46        4
67        4
60        4
66        3
61        3
71        3
54        3
68        3
65        3
74        2
69        2
70        2
42        2
75        2
77        2
78        2
55        2
63        2
72        1
57        1
76        1
64        1
Name: feat_39, dtype: int64
the value counts of feature feat_40 are:
0     32593
1     11485
2      5819
3      3553
4      2157
5      1442
6       962
7       687
8       477
9       393
10      340
11      277
12      245
13      227
14      189
15      184
16      151
17      136
18      105
19       97
20       81
21       55
22       42
23       38
26       25
25       23
24       22
27       17
28       13
29       11
32        7
31        5
30        5
34        4
33        3
35        2
36        2
39        1
37        1
38        1
41        1
Name: feat_40, dtype: int64
the value counts of feature feat_41 are:
0     50713
1      7907
2      1922
3       688
4       235
5       107
6        74
8        37
7        29
10       25
9        19
17       14
14       12
23       11
13       11
15       11
11       10
20        9
12        9
21        8
16        7
19        4
18        3
26        3
22        2
25        2
27        2
29        1
36        1
28        1
30        1
Name: feat_41, dtype: int64
the value counts of feature feat_42 are:
0     44327
1      9787
2      3295
3      1444
4       842
5       531
6       392
7       277
8       195
9       173
10      129
11       81
12       71
13       66
14       50
16       31
15       29
18       22
17       21
21       20
19       13
20       12
23       11
22       10
24        9
25        7
26        6
29        6
34        4
28        4
27        3
37        2
35        2
41        1
30        1
36        1
33        1
32        1
31        1
Name: feat_42, dtype: int64
the value counts of feature feat_43 are:
0     51611
1      5780
2      1815
3       727
4       398
5       257
6       210
7       147
8       140
10      131
9       124
11      114
12       87
13       84
14       69
16       42
15       40
17       29
18       17
19       17
21       14
20       11
23        5
22        3
24        3
26        1
42        1
28        1
Name: feat_43, dtype: int64
the value counts of feature feat_44 are:
0     45082
1      8919
2      3986
3      1749
4       909
5       431
6       283
7       135
8       112
9        67
10       53
11       43
12       32
13       18
14       17
17       11
16       10
18        4
19        4
15        3
20        3
23        2
21        2
34        1
22        1
29        1
Name: feat_44, dtype: int64
the value counts of feature feat_45 are:
0     58021
1      2628
2       543
3       201
4        71
5        42
6        41
9        23
8        19
17       16
7        15
18       15
10       15
11       11
34        9
19        9
20        9
12        8
31        7
62        7
24        7
53        7
42        6
58        6
41        6
14        5
36        5
45        5
25        5
29        5
21        5
57        5
40        4
28        4
38        4
37        4
47        4
16        4
64        4
22        4
35        3
23        3
69        3
26        3
60        3
56        3
49        3
63        3
43        3
15        3
51        3
13        3
52        2
30        2
33        2
61        2
48        2
66        2
73        2
54        2
27        2
76        1
44        1
68        1
59        1
46        1
67        1
78        1
39        1
71        1
75        1
50        1
72        1
55        1
80        1
32        1
Name: feat_45, dtype: int64
the value counts of feature feat_46 are:
0     51921
1      4286
2      1429
3       772
4       613
5       468
6       408
7       333
8       267
9       240
10      209
12      162
11      152
13      126
14       99
15       67
16       60
17       49
18       44
19       36
20       24
21       20
22       19
24       15
23       12
25       11
27        8
40        4
26        4
32        4
34        3
29        3
35        2
28        2
33        2
41        1
30        1
36        1
31        1
Name: feat_46, dtype: int64
the value counts of feature feat_47 are:
0     56688
1      2820
2       822
3       400
4       248
5       212
6       134
7       106
8        64
10       60
9        57
11       42
14       28
13       27
15       25
12       25
16       17
17       15
18       14
19        9
20        9
21        7
24        6
23        6
22        5
25        4
28        4
37        3
36        3
29        3
40        2
26        2
27        2
34        2
32        2
31        2
30        1
38        1
47        1
Name: feat_47, dtype: int64
the value counts of feature feat_48 are:
0     28174
1     12801
2      7397
3      4420
4      2876
5      2066
6      1390
7       890
8       603
9       397
10      270
11      138
12       79
14       73
13       66
15       55
16       41
17       16
20       15
21       12
23       10
18       10
33        7
19        6
41        5
39        5
36        5
38        5
22        5
40        4
34        4
48        3
27        3
25        3
32        3
24        3
35        2
31        2
42        2
46        2
26        2
28        2
43        2
37        1
29        1
47        1
49        1
Name: feat_48, dtype: int64
the value counts of feature feat_49 are:
0     51571
1      6343
2      1925
3       744
4       420
5       234
6       188
8       102
7        99
9        49
10       39
12       30
11       26
13       19
14       15
16       13
15       13
22        8
17        8
18        6
19        4
46        3
26        3
32        2
34        2
23        2
47        2
35        1
20        1
81        1
24        1
33        1
25        1
72        1
30        1
Name: feat_49, dtype: int64
the value counts of feature feat_50 are:
0     53492
1      4974
2      1575
3       686
4       354
5       229
6       143
7        76
8        60
9        53
10       35
13       22
11       19
12       18
15       11
20       10
14       10
16        8
17        7
19        6
18        6
24        6
22        6
33        5
25        4
37        4
27        4
26        4
47        4
28        4
23        4
44        3
30        3
39        3
38        3
32        3
35        2
31        2
43        2
21        2
55        1
50        1
49        1
48        1
65        1
45        1
34        1
71        1
57        1
36        1
68        1
53        1
73        1
41        1
54        1
40        1
Name: feat_50, dtype: int64
the value counts of feature feat_51 are:
0     60159
1      1088
2       346
3       107
4        76
5        36
6        17
8        13
7         7
11        6
10        5
9         3
17        3
16        2
18        2
28        2
24        1
12        1
44        1
13        1
14        1
33        1
Name: feat_51, dtype: int64
the value counts of feature feat_52 are:
0     55740
1      3527
2      1241
3       558
4       297
5       162
6       101
7        57
8        49
9        30
12       19
11       17
10       15
13        8
14        8
20        6
17        6
15        5
18        5
16        5
19        4
22        3
26        2
32        1
23        1
25        1
24        1
35        1
39        1
36        1
21        1
38        1
48        1
27        1
44        1
28        1
Name: feat_52, dtype: int64
the value counts of feature feat_53 are:
0     49735
1      8346
2      2073
3       536
4       256
5       177
6       116
7       106
8        71
9        54
21       31
19       25
27       23
24       23
18       23
30       21
22       19
23       19
10       19
11       17
20       17
15       17
26       17
12       16
14       15
28       14
17       14
29       11
13       10
31       10
25        8
16        7
35        6
33        5
32        5
38        4
34        4
37        3
36        2
39        1
40        1
53        1
Name: feat_53, dtype: int64
the value counts of feature feat_54 are:
0     33571
1      8734
2      4912
3      3258
4      2207
5      1754
6      1354
7      1049
8       874
9       691
10      548
11      416
12      383
14      347
13      335
15      241
16      201
18      158
17      143
19      112
20       92
21       75
22       71
23       45
24       39
25       33
26       29
28       29
30       25
27       22
29       17
32       14
34       11
33        9
31        9
40        8
35        8
42        7
43        7
36        7
37        6
41        4
44        4
48        4
63        3
55        2
38        2
39        2
45        2
60        1
54        1
49        1
52        1
Name: feat_54, dtype: int64
the value counts of feature feat_55 are:
0     50509
1      7423
2      2222
3       793
4       325
5       200
6       133
7        94
8        68
12       20
9        18
10       16
11       15
13       11
15        4
18        4
19        4
14        3
16        3
17        3
20        2
21        2
22        2
27        2
26        1
23        1
Name: feat_55, dtype: int64
the value counts of feature feat_56 are:
0     54672
1      4848
2      1263
3       301
4       118
5        70
7        63
6        45
12       39
9        39
11       37
15       35
13       34
10       32
8        31
14       23
16       23
18       22
19       18
17       17
20       16
22       16
24       10
29        9
26        8
33        8
23        7
25        7
31        6
27        6
30        6
21        6
44        5
28        4
32        4
52        3
42        3
48        3
35        2
49        2
53        2
56        2
36        2
60        1
34        1
45        1
38        1
57        1
55        1
62        1
39        1
51        1
43        1
46        1
Name: feat_56, dtype: int64
the value counts of feature feat_57 are:
0     52655
1      5213
2      1892
3       865
4       486
5       274
6       156
7        99
8        83
9        50
10       31
11       18
12        9
14        8
13        5
15        5
18        5
19        4
20        4
24        4
16        3
28        2
22        2
25        2
17        1
23        1
30        1
Name: feat_57, dtype: int64
the value counts of feature feat_58 are:
0      53542
1       3957
2       1196
3        553
4        463
5        316
6        273
7        201
8        163
10       138
9        122
11        92
13        65
12        61
14        53
20        47
15        38
22        35
16        35
17        34
24        29
21        26
23        26
19        26
27        24
18        24
26        22
31        20
33        19
25        19
32        16
30        14
28        12
36        12
35        11
37         9
29         9
45         9
41         8
43         8
34         8
50         8
40         7
51         7
56         7
47         6
46         6
57         6
42         6
60         5
39         5
65         5
64         4
55         4
44         4
48         4
53         4
49         3
70         3
67         3
52         3
38         3
93         3
73         3
59         3
62         2
116        2
84         2
61         2
86         2
83         2
63         2
69         2
71         2
115        1
74         1
99         1
82         1
92         1
66         1
81         1
80         1
117        1
94         1
54         1
58         1
75         1
Name: feat_58, dtype: int64
the value counts of feature feat_59 are:
0     55082
1      4148
2       983
3       435
4       252
5       174
6       108
7        58
8        56
19       38
9        36
12       34
11       30
10       29
14       27
18       26
17       26
13       25
16       23
15       19
29       17
23       15
22       15
32       14
36       13
28       13
26       13
34       12
24       12
21       11
30       11
25       10
20       10
40        8
33        8
38        8
37        7
50        7
35        7
43        6
39        6
27        6
48        4
31        4
46        3
42        3
47        3
61        2
45        2
64        2
53        2
51        2
59        2
44        2
55        1
60        1
49        1
97        1
65        1
57        1
41        1
56        1
63        1
Name: feat_59, dtype: int64
the value counts of feature feat_60 are:
0     46458
1      7982
2      2024
12     1040
3       617
4       560
8       557
13      347
10      346
9       285
6       248
5       227
14      204
16      198
11      192
7       155
17      106
15       86
18       80
19       42
21       29
20       27
22       16
23        9
24        7
25        5
28        5
26        4
27        4
32        4
31        3
39        2
30        2
33        2
40        1
38        1
37        1
36        1
34        1
Name: feat_60, dtype: int64
the value counts of feature feat_61 are:
0     56075
1      2504
2      1281
3       742
4       457
5       274
6       192
7       114
8        90
9        48
10       40
11       22
12       11
13        7
14        5
16        4
17        4
15        3
19        1
38        1
33        1
18        1
23        1
Name: feat_61, dtype: int64
the value counts of feature feat_62 are:
0     35383
1     11923
2      5838
3      3104
4      1856
5      1050
6       667
7       458
8       348
9       238
10      172
11      154
12      119
13       96
14       77
16       76
15       73
17       47
18       38
19       30
54       28
20       22
21       18
23       10
25        9
22        8
24        7
55        5
29        5
56        3
26        3
28        3
41        2
27        2
46        1
42        1
34        1
33        1
32        1
31        1
Name: feat_62, dtype: int64
the value counts of feature feat_63 are:
0     55853
1      4473
2       912
3       254
4       111
6        55
5        49
17       43
7        25
10       24
11       22
9        12
8         9
15        7
12        4
21        3
16        3
19        3
20        2
22        2
18        2
50        2
51        2
23        2
30        1
27        1
26        1
14        1
Name: feat_63, dtype: int64
the value counts of feature feat_64 are:
0     40077
1     11353
2      3696
3      1461
4       818
5       555
6       434
8       397
7       365
10      335
9       328
11      295
13      235
12      222
14      192
15      172
16      170
18      123
17      118
19       92
20       76
23       57
22       54
21       53
25       33
24       33
26       20
27       19
29       14
28       13
30       11
32        9
31        6
35        5
34        5
33        5
43        4
39        3
38        3
36        3
40        2
37        2
41        2
42        2
44        2
55        1
51        1
73        1
72        1
Name: feat_64, dtype: int64
the value counts of feature feat_65 are:
0     52706
1      6639
2      1678
3       485
4       171
5        77
6        49
7        20
8        13
14        7
10        7
9         5
25        3
38        3
12        3
30        2
16        2
28        1
13        1
19        1
20        1
23        1
24        1
26        1
11        1
Name: feat_65, dtype: int64
the value counts of feature feat_66 are:
0     44352
1      9523
2      4165
3      1757
4       865
5       419
6       294
7       156
8       115
9        58
11       53
10       45
12       18
14        9
13        7
19        4
20        4
22        4
16        4
15        3
26        3
21        3
28        2
17        2
18        2
24        2
27        2
33        1
23        1
35        1
25        1
36        1
29        1
30        1
Name: feat_66, dtype: int64
the value counts of feature feat_67 are:
0      23930
1       9878
2       6689
3       4434
4       4116
5       2516
6       2353
7       1649
8       1358
9        964
10       749
11       498
12       394
13       336
14       253
15       202
16       164
17       122
18       115
22        96
19        95
20        94
24        78
21        72
23        70
25        70
28        55
27        53
26        49
29        42
30        37
33        29
36        28
31        27
32        26
35        25
34        24
38        21
37        18
39        17
45        16
40        13
41        12
42        12
48         8
46         7
44         7
49         6
53         6
47         4
52         4
56         3
51         3
54         3
43         3
61         2
60         2
64         2
68         2
55         2
59         2
58         2
50         2
70         1
104        1
89         1
76         1
79         1
62         1
82         1
83         1
63         1
Name: feat_67, dtype: int64
the value counts of feature feat_68 are:
0      53144
1       4930
2       1442
3        638
4        470
5        241
6        157
7        134
9         97
11        86
8         83
10        80
12        79
13        47
16        44
14        43
15        33
17        30
20        14
18        14
19        12
26        10
22        10
23         7
27         7
21         5
25         4
33         3
24         2
35         2
37         2
64         1
32         1
48         1
34         1
36         1
28         1
109        1
29         1
Name: feat_68, dtype: int64
the value counts of feature feat_69 are:
0     53174
1      4262
2      1260
3       563
4       382
5       209
6       157
7       132
8       119
9       107
10      103
12       98
11       91
15       71
14       69
13       67
16       67
22       62
20       53
18       51
17       50
19       49
34       39
24       39
21       38
25       38
28       33
27       32
23       32
32       31
26       31
30       27
41       26
31       25
33       24
40       23
29       23
36       23
37       20
35       18
39       18
45       15
43       14
38       12
48       12
46       11
53       11
42        9
47        9
51        8
44        8
50        5
49        5
55        4
56        3
60        3
59        2
57        2
52        2
62        2
61        1
76        1
64        1
54        1
63        1
Name: feat_69, dtype: int64
the value counts of feature feat_70 are:
0     40241
1      9865
2      4735
3      2589
4      1568
5       962
6       600
7       346
8       250
9       164
10      128
11      109
12       75
14       46
13       40
15       33
16       32
17       23
19       16
18       13
20       10
25        7
24        5
23        4
26        3
21        3
30        2
31        2
22        1
37        1
41        1
46        1
27        1
28        1
32        1
Name: feat_70, dtype: int64
the value counts of feature feat_71 are:
0     51493
1      6698
2      1906
3       783
4       373
5       203
6       103
7        72
8        48
9        33
10       31
13       21
11       14
12       13
17       10
18       10
19       10
21        9
15        8
16        7
14        6
23        6
20        5
25        5
24        4
26        4
28        2
31        1
Name: feat_71, dtype: int64
the value counts of feature feat_72 are:
0     43995
1      9548
2      3123
3      1274
4       815
5       517
6       421
7       364
8       317
9       245
10      235
11      175
12      134
13      128
14       97
16       96
15       89
17       60
18       52
19       51
20       42
21       29
22       23
23       13
24       10
25        8
27        6
28        5
26        4
29        1
30        1
Name: feat_72, dtype: int64
the value counts of feature feat_73 are:
0      51527
1       5693
2       2742
3        597
4        355
5        200
6        128
7         93
8         59
9         44
10        37
11        30
12        25
14        19
15        17
13        15
17        13
22        13
16        11
18        10
20        10
37         9
26         8
19         8
35         7
21         6
31         6
29         6
23         5
40         5
56         5
25         5
27         5
38         5
32         5
46         4
41         4
39         4
63         4
34         4
33         4
50         4
47         4
24         4
30         4
52         4
55         4
89         4
28         4
85         3
48         3
90         3
59         3
44         3
42         3
101        3
36         3
113        3
45         3
58         3
51         2
281        2
91         2
60         2
92         2
352        2
75         2
121        2
115        2
82         2
112        2
76         1
98         1
132        1
68         1
49         1
323        1
131        1
252        1
61         1
253        1
93         1
161        1
65         1
62         1
114        1
160        1
96         1
64         1
158        1
148        1
69         1
311        1
83         1
171        1
139        1
108        1
119        1
170        1
77         1
88         1
137        1
86         1
72         1
80         1
78         1
110        1
71         1
54         1
181        1
111        1
283        1
325        1
165        1
287        1
Name: feat_73, dtype: int64
the value counts of feature feat_74 are:
0      50047
1       6103
2       2778
3       1194
4        595
5        240
6        190
7        140
8        106
9         71
10        57
11        39
12        28
13        19
14        14
16        13
19        12
15        10
17         9
18         9
20         8
25         8
22         8
23         6
62         6
37         5
24         5
34         5
44         5
107        5
47         5
27         5
40         4
41         4
39         4
29         4
33         4
32         4
43         4
28         4
26         4
31         4
45         3
59         3
49         3
81         3
72         3
67         3
21         3
53         3
58         3
52         3
42         2
70         2
38         2
101        2
69         2
36         2
63         2
54         2
92         2
55         2
56         2
30         2
48         2
60         2
87         1
89         1
91         1
35         1
76         1
66         1
180        1
93         1
161        1
125        1
96         1
64         1
94         1
61         1
115        1
139        1
83         1
172        1
77         1
46         1
74         1
79         1
105        1
73         1
80         1
112        1
113        1
145        1
50         1
231        1
103        1
82         1
51         1
102        1
110        1
Name: feat_74, dtype: int64
the value counts of feature feat_75 are:
0     48568
1      8078
2      2022
3       651
4       448
5       260
6       243
7       227
8       170
9       161
10       90
11       89
18       62
12       59
14       55
15       51
17       51
23       47
21       47
16       44
20       43
13       41
24       39
22       39
19       36
26       31
27       30
25       26
29       21
32       11
42        9
36        8
37        8
30        7
33        7
35        7
39        7
41        6
28        6
31        6
44        6
46        6
45        5
34        5
43        4
49        4
53        4
48        3
47        3
52        2
38        2
77        2
59        2
62        2
54        2
71        1
66        1
74        1
64        1
51        1
80        1
61        1
73        1
58        1
76        1
60        1
72        1
40        1
75        1
50        1
Name: feat_75, dtype: int64
the value counts of feature feat_76 are:
0      48487
1       7080
2       2231
3        919
4        583
5        446
6        307
7        279
8        225
9        198
10       156
11       126
12       106
13       101
14        77
16        64
15        63
19        40
18        39
17        39
20        34
21        24
22        24
23        20
24        19
27        17
25        15
29        14
30        13
35        11
32        10
26         9
39         9
34         8
28         8
38         8
31         8
42         6
37         6
36         5
41         5
33         5
44         4
43         3
40         3
45         3
51         2
50         2
65         2
46         2
52         2
57         2
47         1
48         1
59         1
80         1
49         1
102        1
54         1
56         1
55         1
Name: feat_76, dtype: int64
the value counts of feature feat_77 are:
0     58354
1      2280
2       515
4       341
3       125
5       102
6        46
9        36
27       12
11       11
23       10
8         9
22        6
26        6
24        5
25        5
10        4
18        2
28        2
19        2
7         2
12        1
21        1
29        1
Name: feat_77, dtype: int64
the value counts of feature feat_78 are:
0     55574
1      3794
2      1106
3       396
4       246
5       123
6        84
7        51
9        36
8        28
10       27
12       25
14       23
13       19
20       18
25       15
11       15
16       14
15       13
31       12
33       11
22       11
35       11
19       10
34       10
45        9
47        9
36        9
18        9
24        9
43        8
27        8
37        7
28        7
38        7
39        7
41        7
21        7
23        7
17        7
46        6
30        6
29        6
42        5
49        5
26        5
55        4
50        4
44        4
53        4
40        4
58        4
57        4
54        3
66        3
51        2
32        2
48        2
64        2
67        2
71        2
56        2
65        1
62        1
78        1
61        1
69        1
80        1
68        1
59        1
Name: feat_78, dtype: int64
the value counts of feature feat_79 are:
0     54697
1      3654
2      1753
3       505
4       282
12      172
5       154
7       146
6       141
11      113
10       74
9        59
8        52
14       27
13       20
15        6
16        6
19        6
20        5
17        3
21        2
25        1
Name: feat_79, dtype: int64
the value counts of feature feat_80 are:
0     48565
1      6036
2      2278
3      1324
4       964
5       612
6       475
7       325
8       233
9       204
10      156
11      115
12      108
13       73
14       62
15       57
16       54
17       38
19       33
18       29
20       28
21       19
22       14
23       13
24       12
25        7
29        6
27        6
30        5
26        4
28        4
34        4
33        3
31        3
45        2
32        2
37        1
48        1
40        1
46        1
54        1
Name: feat_80, dtype: int64
the value counts of feature feat_81 are:
0     58695
1      2310
2       545
3       168
4        65
5        41
6        23
7         8
9         5
8         4
12        3
13        3
16        2
25        1
10        1
14        1
15        1
18        1
26        1
Name: feat_81, dtype: int64
the value counts of feature feat_82 are:
0     56442
1      2871
2      1181
3       575
4       324
5       198
6        98
7        55
8        45
9        22
10       20
11       15
13        6
15        6
14        5
12        4
16        4
19        2
22        1
17        1
20        1
21        1
24        1
Name: feat_82, dtype: int64
the value counts of feature feat_83 are:
0     53668
1      4047
2      1279
3       656
4       452
5       328
6       197
7       184
10      136
8       126
9       102
11       94
12       77
13       73
14       60
15       53
16       46
17       45
18       41
19       28
21       24
22       19
20       16
30       13
25       12
26       10
23       10
24        9
27        6
36        6
28        5
32        5
29        5
31        4
56        3
46        3
34        3
33        3
37        3
60        2
59        2
40        2
38        2
39        2
54        2
48        2
49        2
63        2
70        1
41        1
44        1
67        1
79        1
65        1
62        1
64        1
51        1
Name: feat_83, dtype: int64
the value counts of feature feat_84 are:
0     60455
1       918
2       247
3        89
4        44
6        21
7        14
5        12
22        6
26        5
38        5
8         5
27        4
29        4
30        4
36        4
35        3
37        3
10        3
31        3
13        2
11        2
28        2
16        2
40        2
17        2
23        2
21        1
33        1
56        1
24        1
55        1
53        1
51        1
20        1
15        1
50        1
39        1
48        1
41        1
42        1
76        1
Name: feat_84, dtype: int64
the value counts of feature feat_85 are:
0     48914
1      7130
2      2532
3      1114
4       673
5       373
6       272
7       154
8       104
9        95
10       88
12       45
13       42
11       41
17       40
14       38
16       34
15       32
19       23
18       22
20       19
24       12
22       12
21        9
23        9
28        7
29        7
26        7
27        4
25        4
30        3
35        3
32        2
31        2
36        2
41        2
48        2
45        2
43        1
34        1
52        1
55        1
Name: feat_85, dtype: int64
the value counts of feature feat_86 are:
0     36516
1     11885
2      5872
3      2694
4      1531
5       771
6       585
7       402
8       322
9       234
10      209
11      151
12      128
13       84
14       71
15       52
16       50
17       32
18       25
20       25
19       24
21       22
25       18
24       18
23       18
22       17
28       16
29       13
31       11
33       10
32        9
27        7
26        7
30        6
34        6
36        6
35        5
38        3
45        3
40        2
42        2
54        2
41        2
37        2
39        2
44        2
49        1
62        1
61        1
65        1
50        1
43        1
Name: feat_86, dtype: int64
the value counts of feature feat_87 are:
0     49859
1      7852
2      2165
3       729
4       436
5       239
6       147
7        84
8        77
9        46
10       34
11       23
15       22
13       19
14       19
16       16
12       14
18        9
17        8
20        7
22        7
19        7
21        6
24        6
33        4
43        4
32        3
42        3
23        3
25        3
26        3
36        3
35        3
30        2
41        2
67        1
29        1
60        1
34        1
28        1
37        1
27        1
38        1
49        1
40        1
54        1
47        1
45        1
31        1
Name: feat_87, dtype: int64
the value counts of feature feat_88 are:
0     41844
1     10010
2      3802
3      1868
4      1163
5       797
6       589
7       435
8       321
9       241
10      193
11      127
13       92
12       90
14       71
15       44
16       38
17       37
18       20
19       18
20       18
21       14
22       14
23        8
24        7
25        4
26        4
27        4
29        3
28        1
30        1
Name: feat_88, dtype: int64
the value counts of feature feat_89 are:
0     48248
1      8112
2      2750
3      1213
4       614
5       251
6       181
8       107
7       106
10       43
17       43
9        43
11       31
18       27
19       22
20       20
12       11
13        7
22        7
14        7
16        5
15        5
21        5
61        2
24        2
23        2
32        2
25        2
30        2
34        1
31        1
38        1
47        1
52        1
55        1
59        1
46        1
Name: feat_89, dtype: int64
the value counts of feature feat_90 are:
0      53542
1       3714
2       1338
3        601
4        444
6        271
5        266
7        162
8        145
10       108
9        102
11        75
13        70
16        60
15        59
14        57
12        57
17        50
19        43
22        39
18        37
20        35
23        33
25        33
21        29
24        28
26        24
36        24
30        21
29        19
47        17
40        17
37        17
27        16
34        16
31        16
33        15
39        15
46        15
35        14
43        13
52        13
38        12
28        12
45        12
44        10
53        10
41         9
32         9
48         8
54         8
42         8
49         8
61         6
58         6
50         5
55         5
62         5
57         5
60         5
59         5
51         4
75         4
78         4
71         4
73         4
63         3
67         3
56         3
80         3
72         3
66         2
77         2
90         2
85         2
79         2
68         1
100        1
92         1
64         1
89         1
65         1
109        1
98         1
130        1
106        1
74         1
70         1
99         1
69         1
127        1
Name: feat_90, dtype: int64
the value counts of feature feat_91 are:
0     57030
1      3022
2       726
3       312
4       179
5        90
6        51
39       41
8        36
7        31
14       28
11       19
21       19
19       19
10       18
12       18
9        18
18       18
22       17
17       17
16       15
20       14
13       12
15       11
23       11
26       11
24        8
27        8
28        8
32        7
35        6
37        6
31        6
29        6
34        5
38        5
33        5
36        5
25        4
41        4
30        3
40        1
52        1
47        1
51        1
48        1
46        1
45        1
42        1
44        1
Name: feat_91, dtype: int64
the value counts of feature feat_92 are:
0     48286
1      8603
2      2877
3      1025
4       461
5       240
6       124
7        92
9        60
8        53
10       16
11       12
12       10
13        7
14        4
15        3
18        2
17        2
19        1
Name: feat_92, dtype: int64
the value counts of feature feat_93 are:
0     58132
1      2606
2       639
3       215
4        90
5        34
6        27
7        15
8        14
9        13
10       10
20        7
12        7
15        6
18        6
11        5
37        4
41        4
13        4
17        4
16        3
19        3
36        3
14        3
39        2
30        2
27        2
26        2
38        2
54        1
87        1
40        1
24        1
25        1
21        1
83        1
50        1
35        1
28        1
34        1
60        1
62        1
63        1
Name: feat_93, dtype: int64

In [9]:
def value_counts_plots(dat,rows = 4, cols = 4):
    _,ax = plt.subplots(rows,cols,sharey='row',sharex='col',figsize = (cols*5,rows*5))
    for i,feat in enumerate(dat.columns[:(rows*cols)]):
        dat[feat].value_counts().iloc[:20].plot(kind = 'bar',ax=ax[int(i/cols), int(i%cols)],title='value_counts {}'.format(feat))

value_counts_plots(tr_data.iloc[:,1:17],4,4)



In [10]:
cor_mat = tr_data.iloc[:,1:-1].corr()

In [11]:
cor_mat


Out[11]:
feat_1 feat_2 feat_3 feat_4 feat_5 feat_6 feat_7 feat_8 feat_9 feat_10 feat_11 feat_12 feat_13 feat_14 feat_15 feat_16 feat_17 feat_18 feat_19 feat_20 feat_21 feat_22 feat_23 feat_24 feat_25 ... feat_69 feat_70 feat_71 feat_72 feat_73 feat_74 feat_75 feat_76 feat_77 feat_78 feat_79 feat_80 feat_81 feat_82 feat_83 feat_84 feat_85 feat_86 feat_87 feat_88 feat_89 feat_90 feat_91 feat_92 feat_93
feat_1 1.000000 0.031332 -0.027807 -2.752941e-02 0.042973 0.043603 0.298952 0.056321 -0.032285 0.097776 -0.042928 0.056934 0.139254 0.063517 -0.045738 0.027086 0.053004 0.084856 2.302499e-03 0.070511 -0.027026 0.063283 0.048686 0.067255 0.187237 ... 0.007544 0.165442 0.013712 -0.029983 0.140815 0.051365 0.011596 0.153808 0.123752 0.279202 0.228912 -0.013303 0.032427 -0.026085 0.059165 0.049634 -0.008739 0.107947 0.089374 0.020830 0.096851 0.010310 0.037264 0.054777 0.081783
feat_2 0.031332 1.000000 0.082573 1.349870e-01 0.020926 0.041343 0.222386 0.019815 -0.025630 0.051925 0.118534 0.090153 0.157467 -0.070057 -0.048798 0.108046 0.074902 0.242716 1.766549e-01 0.449160 0.014113 0.215106 0.162065 0.253684 -0.096366 ... 0.307406 0.112968 -0.002336 -0.023267 0.039192 0.070724 0.093689 0.259360 0.014911 0.094256 0.033668 0.155768 0.052101 0.119109 0.371691 0.009845 -0.006764 -0.039090 0.047451 -0.047035 0.105527 0.515022 0.026383 -0.008219 0.054593
feat_3 -0.027807 0.082573 1.000000 5.835232e-01 0.010880 0.004288 0.001294 -0.053462 -0.063551 0.036944 0.596243 0.050037 0.013870 -0.111105 -0.065285 0.221426 -0.023093 0.115655 -1.222845e-02 -0.011069 0.354925 0.251082 -0.002427 -0.031596 -0.157459 ... -0.032748 -0.018774 -0.053020 -0.045339 -0.013972 0.041559 -0.044724 -0.028670 -0.001584 -0.021979 -0.020566 0.442036 0.013089 0.438458 -0.019914 0.011159 -0.048626 -0.096093 -0.009838 -0.082336 0.174781 -0.015068 -0.012417 0.066921 0.006814
feat_4 -0.027529 0.134987 0.583523 1.000000e+00 0.017290 0.014059 0.014490 -0.046184 -0.046250 0.059514 0.389409 0.057434 0.028973 -0.099215 -0.051222 0.211078 -0.007554 0.214895 -3.519107e-07 0.044657 0.232923 0.247738 0.030622 0.003728 -0.134231 ... -0.014461 0.020798 -0.042413 -0.029796 -0.011285 0.049097 -0.031454 -0.013792 0.015318 -0.014499 -0.010835 0.405772 0.028284 0.436541 -0.001052 0.005684 -0.033153 -0.071029 0.005055 -0.067484 0.183715 0.009454 -0.010312 0.087631 0.015746
feat_5 0.042973 0.020926 0.010880 1.729026e-02 1.000000 0.145355 0.075047 0.035861 -0.024708 0.091324 0.004882 0.036668 0.059081 -0.037607 -0.007000 0.062877 0.062197 0.052186 -8.555966e-03 0.046200 0.003288 0.075161 0.017281 0.075222 -0.003610 ... -0.003294 0.118510 0.056428 0.005177 0.001609 0.017265 0.015279 0.035570 0.030462 0.070709 0.055115 0.026223 0.129333 0.057400 0.008006 0.467329 0.034062 0.013879 0.013999 -0.019201 0.119951 0.004842 0.012012 0.065331 0.002038
feat_6 0.043603 0.041343 0.004288 1.405895e-02 0.145355 1.000000 0.088014 0.012867 -0.009373 0.041940 0.014504 0.028588 0.036293 -0.027350 -0.018328 0.021934 0.015488 0.048710 3.849262e-02 0.057813 0.008046 0.038939 0.043651 0.082124 -0.023319 ... 0.074836 0.052401 0.011901 -0.011090 0.025023 0.043160 0.006951 0.073867 0.006501 0.061250 0.009942 0.017648 0.044136 0.014907 0.035145 0.177777 0.004290 0.010455 0.015256 -0.015437 0.035042 0.054034 0.012465 0.015479 0.008521
feat_7 0.298952 0.222386 0.001294 1.448981e-02 0.075047 0.088014 1.000000 0.038121 -0.027146 0.194258 0.012418 0.056230 0.199142 -0.044671 -0.035721 0.043957 0.127245 0.098972 5.807104e-02 0.364972 -0.022908 0.162620 0.186462 0.244813 -0.048820 ... 0.131430 0.237907 0.115813 -0.014921 0.022819 0.053059 0.039865 0.375114 0.005769 0.567084 0.066753 0.028860 0.144308 0.022059 0.282069 0.062634 0.037874 -0.009169 0.089574 -0.033646 0.063511 0.129578 0.068506 -0.032261 0.034912
feat_8 0.056321 0.019815 -0.053462 -4.618407e-02 0.035861 0.012867 0.038121 1.000000 -0.039281 -0.000023 -0.065923 0.091424 0.095365 -0.061799 -0.056960 -0.004659 0.173912 0.087777 1.938742e-02 0.062595 -0.041095 0.029032 0.012774 0.161848 -0.036939 ... 0.046258 0.023089 0.081664 -0.029868 0.028999 -0.000431 0.031466 0.081682 0.027486 0.079623 0.083714 -0.038382 0.035102 -0.034409 0.033479 0.005064 -0.003416 -0.029395 0.059929 -0.050931 0.007974 0.026807 0.095990 0.013608 0.005131
feat_9 -0.032285 -0.025630 -0.063551 -4.624977e-02 -0.024708 -0.009373 -0.027146 -0.039281 1.000000 -0.024323 -0.075820 -0.021885 -0.040164 -0.110188 0.009858 -0.082664 -0.028709 -0.043642 -1.671680e-04 -0.023397 -0.028409 -0.062348 0.006940 0.073618 -0.025279 ... -0.029335 -0.056205 0.043286 -0.058147 0.022679 0.007594 -0.027313 -0.027424 -0.020185 -0.015922 -0.036116 -0.046721 -0.005847 -0.039806 -0.032875 -0.013569 -0.031462 -0.019144 -0.016925 0.001160 -0.019147 -0.020698 -0.014742 -0.069707 -0.006038
feat_10 0.097776 0.051925 0.036944 5.951396e-02 0.091324 0.041940 0.194258 -0.000023 -0.024323 1.000000 0.006010 0.048969 0.086682 -0.029598 -0.021700 0.063997 0.092959 0.071635 9.015307e-03 0.176373 -0.005134 0.141405 0.096666 0.081684 0.009792 ... 0.077354 0.322857 0.104834 0.004225 0.000240 0.008912 0.003828 0.106752 0.019069 0.091760 0.113659 0.019042 0.135928 0.029741 0.052025 0.017939 0.086758 0.159447 0.077421 0.054635 0.061498 0.049908 0.024025 -0.006869 0.041316
feat_11 -0.042928 0.118534 0.596243 3.894092e-01 0.004882 0.014504 0.012418 -0.065923 -0.075820 0.006010 1.000000 0.053391 0.005500 -0.151635 -0.100255 0.134924 -0.031807 0.079620 3.367902e-02 -0.005641 0.324080 0.154861 0.026500 0.064213 -0.206207 ... 0.010697 -0.050540 -0.071717 -0.086496 -0.006893 0.186561 -0.034513 0.021357 -0.008064 -0.009866 -0.024491 0.561843 0.004795 0.420361 -0.000190 0.017724 -0.074293 -0.123339 -0.032969 -0.114491 0.137374 0.045074 -0.029511 0.013179 0.003326
feat_12 0.056934 0.090153 0.050037 5.743356e-02 0.036668 0.028588 0.056230 0.091424 -0.021885 0.048969 0.053391 1.000000 0.115288 -0.021695 0.028407 0.113804 0.031434 0.100066 3.474800e-02 0.071224 0.048215 0.119511 0.070561 0.085558 -0.012281 ... 0.057074 0.071630 0.028629 0.031888 0.181833 0.087012 0.052536 0.113921 0.021418 0.026525 0.036666 0.064162 0.052954 0.054571 0.036529 0.009807 0.019283 -0.007214 0.016089 -0.024324 0.082220 0.062721 0.063965 0.063922 0.012722
feat_13 0.139254 0.157467 0.013870 2.897317e-02 0.059081 0.036293 0.199142 0.095365 -0.040164 0.086682 0.005500 0.115288 1.000000 -0.021555 -0.032725 0.087992 0.319352 0.177439 4.295357e-02 0.194816 -0.005092 0.209427 0.056463 0.192249 0.006019 ... 0.086611 0.145294 0.052337 -0.008543 0.030927 0.021072 0.022496 0.189751 0.178263 0.224472 0.233604 0.010431 0.065423 0.010074 0.115747 0.023221 0.002594 0.004850 0.093870 -0.036259 0.062990 0.107722 0.044338 0.071953 0.038989
feat_14 0.063517 -0.070057 -0.111105 -9.921490e-02 -0.037607 -0.027350 -0.044671 -0.061799 -0.110188 -0.029598 -0.151635 -0.021695 -0.021555 1.000000 -0.039565 0.018640 -0.040148 -0.076035 -4.274776e-02 -0.060775 -0.005645 -0.063087 -0.046284 -0.118920 0.557929 ... -0.058352 0.054226 -0.076935 -0.022358 -0.040175 -0.033498 -0.079099 -0.058841 0.007714 -0.041530 -0.045473 -0.104507 -0.037389 -0.084089 -0.070643 -0.027058 -0.021455 0.145787 -0.020229 0.323089 -0.038881 -0.060240 -0.038444 -0.040133 -0.018127
feat_15 -0.045738 -0.048798 -0.065285 -5.122155e-02 -0.007000 -0.018328 -0.035721 -0.056960 0.009858 -0.021700 -0.100255 0.028407 -0.032725 -0.039565 1.000000 0.344157 -0.045991 -0.044733 -3.202887e-02 -0.034214 0.086686 0.056194 -0.029100 -0.062806 0.008228 ... -0.052924 0.118795 -0.033807 0.764664 -0.019194 -0.013632 -0.048894 -0.061486 -0.016673 -0.027200 -0.039033 -0.057948 -0.019557 -0.050702 -0.052090 -0.009311 0.246847 -0.002529 -0.023191 0.010840 0.029547 -0.046616 -0.034402 -0.018206 -0.020369
feat_16 0.027086 0.108046 0.221426 2.110780e-01 0.062877 0.021934 0.043957 -0.004659 -0.082664 0.063997 0.134924 0.113804 0.087992 0.018640 0.344157 1.000000 0.014567 0.244849 -1.011014e-03 0.088638 0.199338 0.433154 0.037233 -0.016491 0.039487 ... -0.021699 0.255740 0.001594 0.394998 -0.026285 0.034125 -0.059511 -0.015473 0.129884 -0.003965 0.045703 0.205393 0.076330 0.168008 0.017558 0.035211 0.110850 0.003610 0.077770 -0.007257 0.248364 0.016863 0.048494 0.210499 0.031467
feat_17 0.053004 0.074902 -0.023093 -7.553867e-03 0.062197 0.015488 0.127245 0.173912 -0.028709 0.092959 -0.031807 0.031434 0.319352 -0.040148 -0.045991 0.014567 1.000000 0.154259 3.731379e-02 0.261954 -0.040070 0.157098 0.133157 0.257106 -0.034996 ... 0.100656 0.108789 0.150286 -0.023103 0.002826 0.001770 0.025506 0.134841 0.099665 0.069539 0.114670 -0.015193 0.123831 -0.012734 0.113987 0.000334 0.015559 0.049102 0.214221 -0.034139 0.035390 0.045218 0.088508 -0.006538 0.056695
feat_18 0.084856 0.242716 0.115655 2.148952e-01 0.052186 0.048710 0.098972 0.087777 -0.043642 0.071635 0.079620 0.100066 0.177439 -0.076035 -0.044733 0.244849 0.154259 1.000000 3.652979e-02 0.204010 0.043272 0.364125 0.098466 0.134752 -0.063139 ... 0.071926 0.169238 0.074981 -0.002190 -0.008668 0.038278 -0.011790 0.059279 0.102684 0.042958 0.080390 0.182025 0.135914 0.156176 0.085116 0.028752 -0.001555 -0.029295 0.126886 -0.035981 0.247462 0.094336 0.037275 0.126640 0.058100
feat_19 0.002302 0.176655 -0.012228 -3.519107e-07 -0.008556 0.038493 0.058071 0.019387 -0.000167 0.009015 0.033679 0.034748 0.042954 -0.042748 -0.032029 -0.001011 0.037314 0.036530 1.000000e+00 0.105428 -0.024122 0.019088 0.100028 0.290475 -0.065112 ... 0.397621 0.031171 -0.020871 -0.022584 0.056837 0.022614 0.036357 0.179548 -0.007951 0.006204 0.012499 -0.002391 0.000812 -0.006879 0.056721 -0.002847 -0.008292 -0.014560 0.000412 -0.018485 0.011116 0.450925 0.004085 -0.027662 0.014243
feat_20 0.070511 0.449160 -0.011069 4.465657e-02 0.046200 0.057813 0.364972 0.062595 -0.023397 0.176373 -0.005641 0.071224 0.194816 -0.060775 -0.034214 0.088638 0.261954 0.204010 1.054279e-01 1.000000 -0.037885 0.244537 0.225089 0.344270 -0.070439 ... 0.348327 0.316436 0.098633 0.012246 0.029960 0.033726 0.053898 0.359596 0.017077 0.196400 0.074068 0.025698 0.144703 0.023469 0.364803 0.001723 0.084570 0.016850 0.220475 0.004081 0.111231 0.370282 0.079181 -0.018715 0.110054
feat_21 -0.027026 0.014113 0.354925 2.329227e-01 0.003288 0.008046 -0.022908 -0.041095 -0.028409 -0.005134 0.324080 0.048215 -0.005092 -0.005645 0.086686 0.199338 -0.040070 0.043272 -2.412224e-02 -0.037885 1.000000 0.118657 -0.006174 -0.041367 -0.046066 ... -0.044378 -0.007589 -0.040361 0.072693 -0.009870 0.123215 -0.047657 -0.041637 0.000132 -0.027742 -0.016071 0.279618 -0.004052 0.221444 -0.031940 -0.004702 -0.006180 -0.045562 -0.016862 -0.030401 0.105392 -0.033193 -0.019779 0.058008 -0.007677
feat_22 0.063283 0.215106 0.251082 2.477378e-01 0.075161 0.038939 0.162620 0.029032 -0.062348 0.141405 0.154861 0.119511 0.209427 -0.063087 0.056194 0.433154 0.157098 0.364125 1.908832e-02 0.244537 0.118657 1.000000 0.084268 0.088580 -0.047433 ... 0.045054 0.231848 0.072454 0.113100 -0.012546 0.040243 -0.020839 0.060522 0.132590 0.084217 0.093992 0.189565 0.155515 0.177255 0.083639 0.041519 0.044396 -0.018347 0.219974 -0.045439 0.244779 0.098595 0.104921 0.200593 0.113276
feat_23 0.048686 0.162065 -0.002427 3.062225e-02 0.017281 0.043651 0.186462 0.012774 0.006940 0.096666 0.026500 0.070561 0.056463 -0.046284 -0.029100 0.037233 0.133157 0.098466 1.000276e-01 0.225089 -0.006174 0.084268 1.000000 0.211602 -0.033920 ... 0.143339 0.137402 0.056965 -0.012941 0.098657 0.085407 0.026762 0.208441 0.010125 0.091219 0.039133 0.037434 0.116575 0.028166 0.181739 0.011832 0.056994 0.121170 0.111837 -0.014039 0.059743 0.141869 0.010438 -0.031837 0.084945
feat_24 0.067255 0.253684 -0.031596 3.727726e-03 0.075222 0.082124 0.244813 0.161848 0.073618 0.081684 0.064213 0.085558 0.192249 -0.118920 -0.062806 -0.016491 0.257106 0.134752 2.904751e-01 0.344270 -0.041367 0.088580 0.211602 1.000000 -0.127708 ... 0.419143 0.098407 0.123829 -0.050412 0.048055 0.113057 0.156134 0.490795 0.033078 0.223999 0.083032 0.024981 0.084692 -0.016468 0.300629 0.091092 -0.018990 0.015444 0.123298 -0.043479 0.023581 0.357270 0.090833 -0.024375 0.089200
feat_25 0.187237 -0.096366 -0.157459 -1.342306e-01 -0.003610 -0.023319 -0.048820 -0.036939 -0.025279 0.009792 -0.206207 -0.012281 0.006019 0.557929 0.008228 0.039487 -0.034996 -0.063139 -6.511212e-02 -0.070439 -0.046066 -0.047433 -0.033920 -0.127708 1.000000 ... -0.091005 0.126664 -0.012005 0.015754 -0.041218 -0.040263 -0.059513 -0.080761 0.093776 -0.038806 0.092507 -0.138356 -0.021283 -0.114821 -0.092796 -0.018320 0.021119 0.263924 -0.011294 0.207974 -0.012866 -0.088187 -0.045759 0.030135 -0.015708
feat_26 -0.022813 0.064856 0.268112 3.657567e-01 0.025116 0.004680 -0.008782 -0.041599 -0.066414 -0.003721 0.191095 0.042363 0.016335 -0.101571 -0.056035 0.187627 -0.004430 0.234748 -2.116921e-02 -0.004728 0.113374 0.234156 -0.006505 0.037106 -0.124594 ... -0.042414 -0.012608 -0.031770 -0.046341 -0.018681 0.036063 -0.022976 -0.039677 0.001871 -0.019367 -0.012442 0.206267 0.028376 0.154009 0.001433 0.048907 -0.048889 -0.072464 0.015937 -0.078470 0.094521 -0.021565 -0.018447 0.199974 0.016709
feat_27 -0.038826 0.037841 0.508370 3.086287e-01 0.002098 0.001943 -0.015429 -0.050272 -0.042531 -0.001551 0.599484 0.041377 -0.012657 -0.093146 -0.045859 0.118580 -0.036484 0.043358 -1.895432e-02 -0.038583 0.376264 0.112099 -0.002618 -0.017972 -0.130455 ... -0.037023 -0.048459 -0.050763 -0.043237 -0.005898 0.134597 -0.040042 -0.028521 -0.007386 -0.020715 -0.027651 0.430435 -0.004720 0.321354 -0.024884 0.002502 -0.046053 -0.082510 -0.028097 -0.070194 0.099536 -0.025263 -0.018778 0.023790 0.000318
feat_28 -0.030257 0.072494 0.551398 4.864171e-01 0.047688 0.017132 0.000998 -0.036668 -0.055545 0.022349 0.422271 0.053406 0.015961 -0.097257 -0.044554 0.235443 -0.020020 0.163886 -1.885817e-02 -0.003058 0.255093 0.253812 -0.003651 -0.021632 -0.126680 ... -0.037170 0.001360 -0.038653 -0.023556 -0.013072 0.043981 -0.039447 -0.029717 0.002422 -0.020470 -0.013202 0.375019 0.048691 0.404849 -0.020382 0.029148 -0.039784 -0.080806 -0.002941 -0.074442 0.169794 -0.021330 -0.015242 0.122653 0.005275
feat_29 0.069266 0.025689 -0.004141 1.427066e-02 0.065957 0.002389 0.046231 0.104985 -0.021328 0.068243 -0.021024 0.063105 0.177028 -0.027883 -0.022266 0.142485 0.135787 0.118086 -1.078641e-02 0.059671 -0.014585 0.235942 0.006970 0.039872 0.033676 ... -0.002000 0.079299 0.050342 0.010273 -0.001577 0.005190 0.016475 0.012754 0.612847 0.026352 0.050629 -0.008607 0.030520 -0.003870 0.015374 0.007335 0.013104 -0.011960 0.038800 -0.032585 0.055398 -0.000185 0.040526 0.084445 0.008301
feat_30 0.033108 0.026896 -0.007667 -8.733991e-04 0.318117 0.196493 0.050535 0.009574 -0.015830 0.012623 0.008832 0.013299 0.042503 -0.028994 -0.007801 0.025419 0.023838 0.018357 6.245008e-03 0.015289 -0.004026 0.015912 0.042710 0.133829 -0.021807 ... 0.009822 0.053508 0.026446 -0.006538 0.073560 0.044089 0.121927 0.073491 0.015577 0.025439 0.003858 0.004286 0.095881 0.019710 0.015350 0.716862 -0.011743 -0.003346 0.024016 -0.024413 0.028606 0.016571 0.016378 -0.002712 0.006260
feat_31 -0.011210 0.193216 0.138548 3.512627e-01 0.013188 0.017112 0.032291 -0.018342 -0.016227 0.038503 0.109761 0.056052 0.024556 -0.052896 -0.029179 0.125445 0.028863 0.234090 3.255077e-02 0.123438 0.090587 0.148829 0.123996 0.060356 -0.067072 ... 0.039048 0.076045 -0.005662 -0.016424 0.003859 0.128573 -0.008119 0.027571 0.016217 0.002431 0.006050 0.241754 0.045104 0.191724 0.049387 0.004130 0.012365 -0.030215 0.028640 -0.030582 0.147243 0.068371 -0.008808 0.022346 0.030656
feat_32 0.061361 0.087699 -0.053753 -3.673037e-02 0.122957 0.103699 0.149537 0.017910 0.568417 0.028812 -0.002610 0.017584 0.072300 -0.141330 -0.029320 -0.025200 0.100666 0.018512 1.155059e-01 0.162073 -0.041779 0.023853 0.133619 0.406661 -0.062620 ... 0.112176 0.076867 0.073278 -0.060626 0.049874 0.069656 0.100877 0.227310 0.053867 0.153970 0.056263 -0.014739 0.079886 -0.021769 0.112246 0.286689 -0.000020 0.055348 0.172447 -0.044493 0.014314 0.122931 0.008934 -0.066435 0.130842
feat_33 0.049454 -0.033927 -0.078520 -5.481916e-02 0.006046 -0.019617 0.008628 0.045822 -0.045937 -0.003292 -0.130168 0.048145 0.048620 0.258664 0.273124 0.239344 0.049150 0.033070 -4.092405e-02 0.043688 0.027701 0.083295 -0.020804 -0.042170 0.228878 ... -0.038998 0.119803 -0.002155 0.303326 -0.031310 -0.024346 -0.047442 -0.031347 0.063717 -0.027899 0.035588 -0.068258 0.019694 -0.048967 -0.034326 -0.005488 0.082534 0.038480 0.030021 0.098167 0.055363 -0.048377 0.003487 0.099836 -0.012546
feat_34 -0.042756 -0.026717 -0.039765 -2.908729e-02 -0.001032 -0.010199 -0.022144 0.015314 -0.050045 -0.030941 -0.068741 0.018258 0.004043 -0.094934 -0.049157 -0.047032 -0.009384 -0.020361 -2.231114e-02 -0.038096 -0.026739 -0.043086 -0.017839 0.017694 -0.116002 ... -0.026018 -0.065941 0.003020 -0.056553 -0.011981 -0.020616 -0.041175 -0.033004 -0.010891 -0.020402 -0.012131 -0.030723 -0.012386 -0.031212 -0.012072 -0.007639 -0.047765 -0.080038 -0.019620 -0.084706 -0.029953 -0.028500 0.006878 0.076567 -0.015377
feat_35 -0.010667 0.293374 0.233923 5.544741e-01 0.027013 0.015739 0.043001 -0.024043 -0.026879 0.051793 0.108392 0.077834 0.050881 -0.063796 -0.033329 0.208736 0.026671 0.380595 4.061698e-02 0.153165 0.093071 0.255825 0.075955 0.049722 -0.083226 ... 0.032932 0.090731 -0.024095 -0.014162 -0.001981 0.073560 -0.009315 0.025874 0.014190 0.000374 0.002152 0.274259 0.052736 0.253594 0.035014 0.003819 0.005873 -0.041072 0.023173 -0.034481 0.192518 0.099522 -0.009463 0.064610 0.024180
feat_36 0.095475 0.026988 -0.034305 -2.965968e-02 0.043504 0.014673 0.079760 0.606707 -0.035874 0.007687 -0.047595 0.063250 0.128211 -0.042550 -0.058118 -0.012829 0.199284 0.076773 -1.099318e-02 0.079299 -0.036644 0.044453 0.018374 0.193335 -0.034228 ... 0.017015 0.021627 0.060492 -0.035706 0.018678 0.021245 0.051641 0.076780 0.032473 0.152192 0.073767 -0.023800 0.021000 -0.023039 0.036176 0.011182 -0.027171 -0.029148 0.109157 -0.037274 0.010805 0.008579 0.066842 -0.000525 0.032804
feat_37 0.082306 0.124475 -0.029425 -1.064590e-02 0.035320 0.043213 0.141960 0.119417 -0.024868 0.187069 -0.011404 0.080605 0.077847 -0.038171 -0.040783 0.040773 0.079853 0.062521 6.762914e-02 0.196200 -0.006567 0.065120 0.117174 0.186706 -0.030234 ... 0.122514 0.184344 0.042454 -0.022233 0.169925 0.086901 0.145731 0.201531 0.045286 0.136333 0.045819 0.014978 0.048283 -0.007138 0.115052 0.013236 0.160492 0.005594 0.095706 -0.015467 0.031177 0.174533 0.031573 -0.011842 0.073010
feat_38 0.104666 0.373022 0.046097 9.248764e-02 0.070100 0.078088 0.315177 0.034287 -0.028766 0.177524 0.055483 0.097602 0.191271 -0.061308 0.001730 0.193696 0.136263 0.248949 2.468113e-01 0.489655 0.014056 0.253535 0.229581 0.298310 -0.054273 ... 0.301431 0.409175 0.060743 0.060632 0.023959 0.048949 0.046876 0.344171 0.025131 0.135069 0.067772 0.109521 0.179604 0.096153 0.215912 0.033801 0.181822 0.047868 0.166591 -0.010355 0.263962 0.356354 0.027772 -0.005320 0.083854
feat_39 0.006898 0.020626 -0.016279 -2.699561e-03 -0.000710 0.033470 0.053230 0.071908 -0.013354 0.042223 -0.013556 0.008417 0.015840 -0.001582 -0.003620 0.043227 0.061983 0.058047 6.468167e-03 0.085462 -0.015944 0.052726 0.097809 0.181969 -0.024830 ... 0.030387 0.105113 0.058650 0.000943 0.012927 0.022546 0.008305 0.077277 0.058445 0.018723 0.035878 -0.001440 0.081091 -0.006898 0.050781 -0.003668 0.042419 -0.001503 0.070500 -0.024618 0.017853 0.019496 0.033654 -0.028631 0.016089
feat_40 0.053603 -0.057890 -0.094511 -7.680452e-02 -0.025652 -0.018090 -0.039712 -0.044847 -0.085491 -0.038610 -0.133424 0.016455 -0.036971 0.487804 0.069358 0.287290 -0.071674 -0.024125 -4.258767e-02 -0.062804 0.041815 0.018002 -0.032760 -0.130764 0.417171 ... -0.065651 0.090232 -0.068913 0.102698 -0.034949 -0.002428 -0.082554 -0.070334 0.017066 -0.022609 -0.043747 -0.065813 -0.031681 -0.068693 -0.063668 -0.022284 -0.002764 0.050871 -0.030951 0.162950 0.056494 -0.057816 -0.036275 0.031490 -0.023675
feat_41 0.080960 0.072120 -0.028920 -9.976832e-03 0.038764 0.028930 0.097971 0.075854 -0.023446 0.078533 -0.038465 0.064854 0.123191 -0.029650 -0.026326 0.079613 0.153653 0.104176 2.565826e-02 0.190383 -0.018627 0.128977 0.021231 0.110562 0.023498 ... 0.084362 0.126442 0.053532 0.003314 0.004248 0.007097 0.071319 0.121279 0.072372 0.011902 0.127535 -0.003674 0.070796 -0.005659 0.056999 0.002849 -0.004431 0.000603 0.045929 -0.031026 0.100392 0.064128 0.071538 0.159939 0.007970
feat_42 0.073611 0.043863 0.036605 7.139722e-02 0.023272 0.020709 -0.001220 -0.006578 -0.055850 0.024055 -0.002356 0.028966 0.036274 -0.054232 -0.045392 0.142924 0.045206 0.229794 -2.476852e-02 0.039543 -0.009244 0.238647 -0.001777 0.015382 -0.012705 ... -0.035006 0.072523 0.004829 -0.024687 -0.022221 0.007210 -0.032157 -0.029785 0.033537 -0.016144 0.104605 0.028310 0.044863 0.003465 0.032126 0.011315 -0.001051 -0.029038 0.145685 -0.045588 0.066354 -0.011508 0.020277 0.197315 0.095720
feat_43 0.008884 0.017600 -0.014068 -8.930611e-04 0.048320 0.015515 0.010259 -0.004214 -0.046033 0.111706 -0.027301 0.007790 -0.026543 0.073237 0.010929 0.046106 -0.018660 0.007073 -1.446902e-02 0.043772 0.001126 -0.009844 0.039410 -0.047241 0.084195 ... -0.025677 0.321611 -0.032762 0.026895 -0.012752 0.022302 -0.034776 -0.022225 -0.005309 -0.015939 -0.024274 0.003795 -0.002574 -0.009240 0.008312 -0.002255 0.415152 0.109338 0.007965 0.158878 0.049449 -0.014281 -0.019450 -0.040629 -0.000640
feat_44 0.090439 0.208450 0.242901 2.386655e-01 0.177137 0.065082 0.213066 0.001733 -0.062023 0.222353 0.172523 0.091486 0.162659 -0.061226 0.043123 0.353285 0.085796 0.265708 4.202058e-02 0.239186 0.094507 0.416059 0.115325 0.086296 -0.027719 ... 0.033513 0.384838 0.073183 0.098485 -0.005774 0.036903 -0.014398 0.074762 0.072331 0.093156 0.110654 0.179266 0.202801 0.182162 0.084283 0.118820 0.104923 0.049617 0.165350 -0.010699 0.205417 0.080785 0.001806 0.073727 0.105498
feat_45 0.008601 0.018259 -0.007984 -2.809149e-03 -0.004808 0.025133 0.036262 0.076982 -0.013405 0.009960 -0.006148 0.004838 0.011546 0.015501 0.018245 0.041837 0.028681 0.038576 6.415927e-03 0.046258 -0.011902 0.034295 0.079246 0.150948 -0.014604 ... 0.014862 0.066091 0.022953 0.008630 0.018758 0.022145 0.015586 0.077474 0.063837 0.025537 0.031569 0.000147 0.026733 -0.002928 0.045234 -0.002054 0.026840 -0.007039 0.051954 -0.018612 0.007262 0.017729 0.033762 -0.019553 0.014994
feat_46 -0.040647 0.042491 0.777517 4.362735e-01 -0.003583 0.001892 -0.012643 -0.050246 -0.053175 0.013546 0.579272 0.042124 -0.008579 -0.099296 -0.054633 0.179348 -0.033466 0.059749 -1.880024e-02 -0.032060 0.381266 0.171096 -0.011156 -0.034435 -0.142185 ... -0.036424 -0.040795 -0.049396 -0.042077 -0.010842 0.047543 -0.043645 -0.033789 -0.008934 -0.022669 -0.031722 0.403677 0.000241 0.363145 -0.027402 -0.001093 -0.049848 -0.092302 -0.019250 -0.077723 0.114977 -0.026419 -0.022626 0.049284 -0.004403
feat_47 0.026463 0.014574 -0.009560 -1.291450e-02 0.111428 0.018736 0.177082 0.015016 -0.027254 0.046108 -0.004880 0.018930 0.083185 -0.059736 -0.043214 0.038439 0.017601 0.072757 -1.206439e-02 0.103850 -0.019792 0.135443 0.059817 0.079616 -0.029371 ... -0.007611 0.054501 0.392560 -0.031692 0.013389 0.002744 0.004454 0.066191 -0.008686 0.193238 0.023517 0.010398 0.151613 0.007708 0.037423 0.105327 0.024970 -0.033694 0.030387 -0.042558 0.139668 -0.013074 -0.008806 0.016421 -0.000629
feat_48 0.130564 0.023310 -0.111987 -8.578789e-02 0.013228 0.013193 0.056163 0.104416 0.077385 -0.008297 -0.125103 0.035591 0.089556 0.252006 -0.051239 -0.030415 0.102710 0.019632 3.839369e-02 0.049880 -0.050541 0.002619 0.061294 0.192535 0.255795 ... 0.041509 0.049905 0.030908 -0.036547 0.084806 0.016403 0.050548 0.125008 0.090005 0.074560 0.057616 -0.079256 0.006612 -0.073208 0.049315 0.006009 -0.040097 0.109048 0.099603 0.074914 0.009900 0.070611 0.047508 -0.023148 0.053749
feat_49 0.011179 0.311278 0.242692 3.000109e-01 0.054311 0.022864 0.124320 -0.019114 -0.042280 0.079449 0.250991 0.073520 0.075534 -0.070134 -0.040979 0.227799 0.049887 0.346609 1.960682e-02 0.194854 0.093235 0.307542 0.090079 0.045497 -0.088119 ... 0.031680 0.139793 -0.007692 -0.009323 -0.001989 0.034674 -0.006816 0.047059 0.023213 0.023846 0.041352 0.265545 0.135250 0.343092 0.079155 0.036612 0.006069 -0.043704 0.059635 -0.045283 0.217931 0.075120 -0.006273 0.037485 0.029427
feat_50 0.040114 0.071664 -0.016765 5.343432e-03 0.024087 0.027150 0.140433 0.001231 0.009925 0.252350 -0.019520 0.041978 0.043774 -0.014922 -0.020619 0.058954 0.081685 0.074758 5.629922e-02 0.240263 -0.020847 0.122040 0.152904 0.098027 0.001294 ... 0.072500 0.347168 0.104623 0.016511 0.009222 0.016972 0.015501 0.088080 0.005459 0.051061 0.073377 0.001354 0.173281 -0.001742 0.065188 -0.003742 0.184132 0.132234 0.125120 0.042334 0.076471 0.080146 0.008383 -0.040728 0.052934
feat_51 0.000902 0.085345 0.031979 4.164659e-02 0.060318 0.006902 0.036493 0.009513 -0.013181 0.014012 0.040465 0.016439 0.021930 -0.041262 -0.024504 0.024675 0.076780 0.114754 4.867697e-03 0.073081 0.020342 0.056819 0.085160 0.053253 -0.043517 ... 0.012447 0.016843 0.027463 -0.019303 0.005856 0.022998 0.013396 0.026127 0.015799 0.028184 0.026622 0.093025 0.107963 0.118212 0.043710 0.079998 -0.014491 -0.025348 0.081376 -0.026219 0.063843 0.017031 0.000449 0.013779 0.017484
feat_52 -0.013082 0.105528 0.169111 2.095170e-01 0.003930 0.030929 0.006189 -0.028689 0.009792 0.007879 0.272738 0.068520 0.009553 -0.060335 -0.022071 0.093180 -0.004599 0.107743 1.712624e-02 0.033363 0.230007 0.081117 0.071561 0.064581 -0.073940 ... 0.010622 0.001866 -0.018361 -0.024320 0.007225 0.554737 -0.012264 0.012416 -0.001000 -0.006928 0.006210 0.366544 0.019771 0.189014 0.005840 0.008737 -0.010815 -0.040474 -0.003709 -0.041361 0.115156 0.043089 -0.012082 0.026573 0.014812
feat_53 0.156400 -0.008015 -0.024222 -1.630815e-02 0.040202 0.005914 0.048544 0.018674 -0.030075 0.082810 -0.052811 0.018344 0.161234 0.006808 -0.006163 0.086820 0.018729 0.042412 -1.375631e-02 0.028131 0.002909 0.089161 -0.003534 0.021068 0.149136 ... -0.012123 0.104217 0.013776 0.017736 -0.008826 0.000711 -0.011755 0.011055 0.111723 0.051046 0.349737 -0.020713 0.029944 -0.018108 -0.006772 0.005698 0.010533 0.076241 0.004038 -0.015673 0.081352 -0.016199 -0.004092 0.135595 -0.006926
feat_54 0.001399 0.179173 0.694048 5.254557e-01 0.055299 0.031379 0.079607 -0.025421 -0.078499 0.074637 0.494180 0.102486 0.119941 -0.112305 0.034175 0.468766 0.033721 0.272898 2.603274e-04 0.096978 0.318332 0.502168 0.036249 0.016601 -0.136167 ... -0.007706 0.127314 -0.019349 0.064084 -0.016801 0.066009 -0.050655 0.008459 0.058522 0.019843 0.025234 0.444238 0.082381 0.394613 0.026663 0.026109 0.004352 -0.081509 0.057848 -0.083348 0.256305 0.034802 0.018972 0.153724 0.029959
feat_55 0.165044 0.134617 0.055445 7.007713e-02 0.142221 0.062765 0.343752 0.063415 -0.042138 0.213003 0.022723 0.081504 0.223364 -0.055732 -0.040297 0.131218 0.163377 0.183218 1.804592e-02 0.254142 -0.003326 0.339893 0.087014 0.149115 -0.010211 ... 0.062175 0.195079 0.185377 -0.004484 0.001851 0.016692 0.039229 0.136822 0.068623 0.246042 0.106119 0.051735 0.182156 0.053607 0.113962 0.102831 0.025289 0.021798 0.127128 -0.033113 0.157031 0.069305 0.055702 0.049364 0.055275
feat_56 0.015738 0.018908 0.016288 1.961792e-02 0.001560 0.004014 -0.003145 0.002285 -0.022639 0.009786 0.033221 0.007665 0.002066 0.004436 -0.022519 0.021978 -0.012085 0.014345 8.823711e-03 0.012953 0.026285 0.003457 0.013547 -0.016847 0.014930 ... -0.002325 0.089528 -0.020002 -0.019436 -0.000268 0.032422 -0.020258 -0.004393 0.005466 -0.004568 0.013829 0.043107 -0.002544 0.023436 -0.005914 -0.003549 0.016538 0.072723 -0.005218 0.012290 0.053164 0.008288 -0.003705 0.028787 0.007368
feat_57 -0.014598 0.104263 0.018887 6.946199e-02 0.037162 0.036655 0.073969 0.011968 -0.049335 0.017525 -0.007302 0.042518 0.075397 -0.101382 -0.069910 0.049373 0.173169 0.284435 2.619428e-02 0.136076 -0.022876 0.185503 0.105362 0.208961 -0.110428 ... 0.073636 0.028737 0.034841 -0.055874 0.006254 0.010981 0.056871 0.066284 0.006597 0.052778 0.040919 0.049279 0.084484 0.036242 0.144449 0.043523 -0.034281 -0.055232 0.102572 -0.068615 0.051941 0.087563 0.010013 0.100979 0.045129
feat_58 0.028696 0.371146 0.034506 3.910286e-02 -0.001546 0.110743 0.106203 0.025674 -0.028290 0.020933 0.179361 0.082574 0.132569 -0.059363 -0.044920 0.018927 0.040370 0.048980 2.345026e-01 0.310481 0.004761 0.057172 0.110441 0.370922 -0.091991 ... 0.392839 0.038319 -0.020289 -0.024774 0.057573 0.058768 0.053835 0.365075 -0.001763 0.044968 0.023352 0.078906 0.001446 0.031475 0.235803 -0.005284 -0.015734 -0.026106 0.005737 -0.045055 0.022821 0.407341 0.056724 -0.014156 0.034472
feat_59 0.139364 -0.013283 -0.021717 -1.580168e-02 0.038893 0.001285 0.009624 0.118223 -0.021451 0.051189 -0.039646 0.026684 0.174173 -0.026693 -0.017773 0.046633 0.058797 0.099073 -8.377876e-03 0.020746 -0.024209 0.043127 0.004395 0.041787 0.089081 ... -0.003780 0.229503 0.015826 0.014535 0.015477 -0.002264 -0.000676 0.013573 0.048736 -0.007320 0.189173 -0.024168 0.055354 -0.017358 -0.011922 -0.002065 0.037042 0.148417 0.149499 -0.002890 0.013638 -0.011079 -0.003928 0.010828 0.047987
feat_60 -0.020267 0.018219 0.011369 6.890047e-02 0.008796 0.022289 0.012336 -0.020328 -0.066333 -0.000619 -0.025990 0.027027 0.046147 -0.118618 -0.079152 0.043111 0.090963 0.234885 -2.039351e-03 0.036649 -0.032751 0.166049 0.045739 0.108238 -0.131640 ... -0.014202 0.008525 0.020767 -0.062609 -0.019131 -0.006299 -0.006871 -0.011742 0.024297 -0.002122 0.029188 0.026903 0.055102 0.007344 0.068019 0.020174 -0.043094 -0.078149 0.099639 -0.091812 0.031379 -0.014203 0.011737 0.128371 0.055350
feat_61 -0.038124 0.063873 0.494881 3.544023e-01 0.001559 -0.002227 -0.006284 -0.045203 -0.044343 0.004397 0.543858 0.050080 -0.009951 -0.093809 -0.056169 0.150952 -0.030037 0.084745 -1.463294e-02 -0.027135 0.298307 0.136120 0.005186 -0.018301 -0.132584 ... -0.030713 -0.039559 -0.046490 -0.042920 -0.006029 0.104516 -0.036555 -0.020551 -0.001620 -0.020607 -0.019744 0.575101 0.007611 0.474954 -0.021269 0.002943 -0.047659 -0.083301 -0.027363 -0.070815 0.160405 -0.018112 -0.017045 0.042357 -0.001258
feat_62 0.091636 0.029040 0.010733 2.522773e-02 0.073215 0.022874 0.025485 0.214717 -0.021138 0.054733 -0.051554 0.126326 0.164920 -0.026822 0.097920 0.337177 0.105504 0.197339 -1.471355e-02 0.082477 0.037588 0.319551 0.005936 0.009847 0.077595 ... -0.011587 0.159988 0.089270 0.162735 -0.020436 0.001716 -0.044457 -0.001444 0.214828 0.001336 0.169192 0.027840 0.090282 0.026090 0.022311 0.012320 0.031092 -0.006503 0.081320 -0.048727 0.246666 0.000511 0.279845 0.327176 0.012774
feat_63 0.069799 0.037020 0.031241 5.990274e-02 0.082383 0.017050 0.039585 0.148673 0.013012 0.090421 0.013436 0.038777 0.070109 -0.020837 0.018947 0.104440 0.032391 0.119569 1.220845e-02 0.047287 0.015895 0.105657 0.018242 0.035863 0.023574 ... 0.014252 0.141850 0.049447 0.030482 -0.000880 0.013859 -0.004057 0.026610 0.035163 0.006096 0.194618 0.066939 0.088525 0.052736 0.005221 0.013394 0.026954 0.080492 0.056860 0.026337 0.163009 0.018277 0.009487 0.031464 0.023298
feat_64 -0.010499 -0.005354 -0.065105 -4.728813e-02 -0.021017 -0.002764 0.011165 0.003194 0.702951 0.022536 -0.082868 -0.012603 -0.003286 -0.066800 0.003848 -0.043076 0.021551 -0.001922 -1.698588e-02 0.058862 -0.035863 -0.017547 0.029366 0.099968 -0.009117 ... -0.004913 0.029886 0.058239 -0.039423 0.018469 -0.007032 -0.011456 -0.000467 -0.019363 0.029796 -0.020209 -0.053117 0.010230 -0.047284 -0.001432 -0.013347 0.009820 0.064883 0.075964 0.117596 -0.015218 -0.001930 -0.020846 -0.071886 0.023064
feat_65 0.110041 0.078801 0.065492 6.228472e-02 0.228349 0.066867 0.202346 0.025544 -0.038163 0.182756 0.041014 0.121550 0.108567 -0.011517 0.034954 0.182735 0.072733 0.114910 1.579718e-02 0.143265 0.044702 0.180556 0.066825 0.074939 0.027847 ... 0.015448 0.237573 0.045051 0.067476 0.006393 0.050069 0.014663 0.072170 0.115692 0.099054 0.066714 0.062834 0.127931 0.088551 0.057058 0.120772 0.066922 0.030362 0.050138 -0.011600 0.125884 0.029076 0.001188 0.044286 0.015500
feat_66 0.053010 0.175620 0.088017 1.296545e-01 0.048364 0.033285 0.122660 0.115175 -0.001778 0.100722 0.050764 0.084591 0.122272 -0.081709 -0.018487 0.289082 0.165143 0.285667 3.078749e-02 0.215576 0.022228 0.382385 0.114657 0.116615 -0.035200 ... 0.079321 0.212931 0.072601 0.037809 0.006615 0.021841 0.005674 0.081866 0.147127 0.058784 0.085545 0.107806 0.110691 0.093782 0.088982 0.033794 0.031291 0.088686 0.206406 -0.000679 0.205289 0.094925 0.098063 0.123694 0.067957
feat_67 0.154301 0.068667 -0.110081 -8.045694e-02 0.061964 0.038289 0.148598 0.320949 0.176921 0.043117 -0.114944 0.079377 0.211335 -0.086404 -0.052486 -0.027728 0.306513 0.108521 3.587552e-02 0.199391 -0.075966 0.061315 0.115559 0.435017 -0.001504 ... 0.117455 0.127927 0.131528 -0.035209 0.098574 0.027789 0.121735 0.323678 0.052970 0.188128 0.152964 -0.076209 0.075488 -0.070049 0.127444 0.039005 -0.020048 0.081445 0.295803 -0.058706 0.005220 0.089262 0.112052 -0.011247 0.129018
feat_68 0.014674 -0.012802 -0.030992 -2.009191e-02 0.107405 0.021619 0.040309 0.075384 -0.012192 0.001693 -0.040588 0.014873 0.026881 -0.076979 -0.049076 0.015351 0.038816 0.078124 -5.128506e-03 0.011770 -0.016256 0.036537 0.008228 0.096420 -0.032516 ... -0.017943 0.008038 0.196309 -0.035915 -0.004141 0.008749 -0.008292 0.013405 0.001655 0.084630 0.062394 0.004003 0.084468 0.000787 0.000817 0.036198 -0.024620 -0.038904 0.001672 -0.059843 0.125150 -0.023839 0.022515 0.095970 -0.004602
feat_69 0.007544 0.307406 -0.032748 -1.446082e-02 -0.003294 0.074836 0.131430 0.046258 -0.029335 0.077354 0.010697 0.057074 0.086611 -0.058352 -0.052924 -0.021699 0.100656 0.071926 3.976207e-01 0.348327 -0.044378 0.045054 0.143339 0.419143 -0.091005 ... 1.000000 0.077678 -0.000955 -0.032479 0.045667 0.034456 0.065643 0.409691 0.002209 0.044834 0.036435 -0.014590 0.019568 -0.017440 0.204569 -0.007221 -0.006954 -0.025538 0.027690 -0.022918 0.011806 0.549489 0.041206 -0.037961 0.032052
feat_70 0.165442 0.112968 -0.018774 2.079779e-02 0.118510 0.052401 0.237907 0.023089 -0.056205 0.322857 -0.050540 0.071630 0.145294 0.054226 0.118795 0.255740 0.108789 0.169238 3.117130e-02 0.316436 -0.007589 0.231848 0.137402 0.098407 0.126664 ... 0.077678 1.000000 0.088064 0.192594 -0.002807 0.010436 -0.016054 0.122972 0.067065 0.105585 0.144247 0.004856 0.192565 0.009776 0.069588 0.045636 0.361941 0.225792 0.212133 0.140850 0.163631 0.074178 0.030560 0.007310 0.093488
feat_71 0.013712 -0.002336 -0.053020 -4.241268e-02 0.056428 0.011901 0.115813 0.081664 0.043286 0.104834 -0.071717 0.028629 0.052337 -0.076935 -0.033807 0.001594 0.150286 0.074981 -2.087111e-02 0.098633 -0.040361 0.072454 0.056965 0.123829 -0.012005 ... -0.000955 0.088064 1.000000 -0.015731 -0.006121 -0.012457 0.025972 0.036850 -0.002787 0.099693 0.063309 -0.029219 0.132951 -0.025602 0.026032 0.011858 0.013894 -0.015410 0.060004 -0.048676 0.076348 -0.019694 0.050622 0.000368 0.002001
feat_72 -0.029983 -0.023267 -0.045339 -2.979578e-02 0.005177 -0.011090 -0.014921 -0.029868 -0.058147 0.004225 -0.086496 0.031888 -0.008543 -0.022358 0.764664 0.394998 -0.023103 -0.002190 -2.258364e-02 0.012246 0.072693 0.113100 -0.012941 -0.050412 0.015754 ... -0.032479 0.192594 -0.015731 1.000000 -0.020547 -0.024074 -0.043639 -0.040593 0.016045 -0.022904 -0.017522 -0.038547 0.002439 -0.028420 -0.034569 -0.011992 0.294384 0.008897 0.013536 0.004066 0.057040 -0.030673 -0.008936 0.005300 -0.008233
feat_73 0.140815 0.039192 -0.013972 -1.128547e-02 0.001609 0.025023 0.022819 0.028999 0.022679 0.000240 -0.006893 0.181833 0.030927 -0.040175 -0.019194 -0.026285 0.002826 -0.008668 5.683692e-02 0.029960 -0.009870 -0.012546 0.098657 0.048055 -0.041218 ... 0.045667 -0.002807 -0.006121 -0.020547 1.000000 0.035633 0.190639 0.220832 -0.001634 0.018161 0.015294 -0.007285 0.002868 -0.005143 0.027131 0.012885 -0.010675 -0.000841 -0.004759 -0.026363 -0.006704 0.070001 0.007193 -0.024017 -0.000163
feat_74 0.051365 0.070724 0.041559 4.909735e-02 0.017265 0.043160 0.053059 -0.000431 0.007594 0.008912 0.186561 0.087012 0.021072 -0.033498 -0.013632 0.034125 0.001770 0.038278 2.261396e-02 0.033726 0.123215 0.040243 0.085407 0.113057 -0.040263 ... 0.034456 0.010436 -0.012457 -0.024074 0.035633 1.000000 -0.002297 0.058736 0.009406 0.069628 0.016904 0.174775 0.008959 0.055336 0.024667 0.028021 -0.000453 -0.015945 0.003992 -0.025207 0.042104 0.055372 0.016941 0.004497 0.021967
feat_75 0.011596 0.093689 -0.044724 -3.145389e-02 0.015279 0.006951 0.039865 0.031466 -0.027313 0.003828 -0.034513 0.052536 0.022496 -0.079099 -0.048894 -0.059511 0.025506 -0.011790 3.635667e-02 0.053898 -0.047657 -0.020839 0.026762 0.156134 -0.059513 ... 0.065643 -0.016054 0.025972 -0.043639 0.190639 -0.002297 1.000000 0.172375 -0.010904 0.013876 0.006885 -0.037439 0.011281 -0.022992 0.063463 0.028478 -0.026329 -0.031401 0.001201 -0.058630 -0.014925 0.160418 -0.002625 -0.037710 0.006208
feat_76 0.153808 0.259360 -0.028670 -1.379188e-02 0.035570 0.073867 0.375114 0.081682 -0.027424 0.106752 0.021357 0.113921 0.189751 -0.058841 -0.061486 -0.015473 0.134841 0.059279 1.795475e-01 0.359596 -0.041637 0.060522 0.208441 0.490795 -0.080761 ... 0.409691 0.122972 0.036850 -0.040593 0.220832 0.058736 0.172375 1.000000 0.003596 0.329988 0.073039 0.004267 0.056915 -0.002648 0.291364 0.031277 0.000682 0.010324 0.063411 -0.050417 0.023242 0.291884 0.175163 -0.050887 0.029426
feat_77 0.123752 0.014911 -0.001584 1.531773e-02 0.030462 0.006501 0.005769 0.027486 -0.020185 0.019069 -0.008064 0.021418 0.178263 0.007714 -0.016673 0.129884 0.099665 0.102684 -7.950547e-03 0.017077 0.000132 0.132590 0.010125 0.033078 0.093776 ... 0.002209 0.067065 -0.002787 0.016045 -0.001634 0.009406 -0.010904 0.003596 1.000000 0.005717 0.068083 0.009147 0.022957 0.003631 0.004793 0.001243 0.005602 0.020294 0.019275 -0.007396 0.021591 -0.004988 0.026376 0.076551 0.001715
feat_78 0.279202 0.094256 -0.021979 -1.449856e-02 0.070709 0.061250 0.567084 0.079623 -0.015922 0.091760 -0.009866 0.026525 0.224472 -0.041530 -0.027200 -0.003965 0.069539 0.042958 6.203551e-03 0.196400 -0.027742 0.084217 0.091219 0.223999 -0.038806 ... 0.044834 0.105585 0.099693 -0.022904 0.018161 0.069628 0.013876 0.329988 0.005717 1.000000 0.036415 0.005224 0.047949 -0.012932 0.166186 0.035861 0.004071 -0.018797 0.063539 -0.030010 0.014639 0.043339 0.068450 -0.028596 0.016047
feat_79 0.228912 0.033668 -0.020566 -1.083473e-02 0.055115 0.009942 0.066753 0.083714 -0.036116 0.113659 -0.024491 0.036666 0.233604 -0.045473 -0.039033 0.045703 0.114670 0.080390 1.249856e-02 0.074068 -0.016071 0.093992 0.039133 0.083032 0.092507 ... 0.036435 0.144247 0.063309 -0.017522 0.015294 0.016904 0.006885 0.073039 0.068083 0.036415 1.000000 0.005482 0.080384 -0.003830 0.028770 0.002540 0.004663 0.095254 0.099579 -0.018615 0.073207 0.031099 0.021616 0.162033 0.029082
feat_80 -0.013303 0.155768 0.442036 4.057725e-01 0.026223 0.017648 0.028860 -0.038382 -0.046721 0.019042 0.561843 0.064162 0.010431 -0.104507 -0.057948 0.205393 -0.015193 0.182025 -2.391456e-03 0.025698 0.279618 0.189565 0.037434 0.024981 -0.138356 ... -0.014590 0.004856 -0.029219 -0.038547 -0.007285 0.174775 -0.037439 0.004267 0.009147 0.005224 0.005482 1.000000 0.054154 0.522616 0.018600 0.029430 -0.035876 -0.081888 -0.004588 -0.076250 0.350787 0.012623 -0.017815 0.063401 0.012651
feat_81 0.032427 0.052101 0.013089 2.828377e-02 0.129333 0.044136 0.144308 0.035102 -0.005847 0.135928 0.004795 0.052954 0.065423 -0.037389 -0.019557 0.076330 0.123831 0.135914 8.124693e-04 0.144703 -0.004052 0.155515 0.116575 0.084692 -0.021283 ... 0.019568 0.192565 0.132951 0.002439 0.002868 0.008959 0.011281 0.056915 0.022957 0.047949 0.080384 0.054154 1.000000 0.067345 0.049550 0.096658 0.054972 0.013808 0.084096 -0.017469 0.166234 0.009379 0.017243 0.018565 0.019378
feat_82 -0.026085 0.119109 0.438458 4.365413e-01 0.057400 0.014907 0.022059 -0.034409 -0.039806 0.029741 0.420361 0.054571 0.010074 -0.084089 -0.050702 0.168008 -0.012734 0.156176 -6.879326e-03 0.023469 0.221444 0.177255 0.028166 -0.016468 -0.114821 ... -0.017440 0.009776 -0.025602 -0.028420 -0.005143 0.055336 -0.022992 -0.002648 0.003631 -0.012932 -0.003830 0.522616 0.067345 1.000000 -0.003285 0.054646 -0.034368 -0.065189 -0.012153 -0.059553 0.266249 -0.001795 -0.014641 0.049661 0.005497
feat_83 0.059165 0.371691 -0.019914 -1.051874e-03 0.008006 0.035145 0.282069 0.033479 -0.032875 0.052025 -0.000190 0.036529 0.115747 -0.070643 -0.052090 0.017558 0.113987 0.085116 5.672093e-02 0.364803 -0.031940 0.083639 0.181739 0.300629 -0.092796 ... 0.204569 0.069588 0.026032 -0.034569 0.027131 0.024667 0.063463 0.291364 0.004793 0.166186 0.028770 0.018600 0.049550 -0.003285 1.000000 -0.001047 -0.009157 -0.029711 0.072006 -0.052930 0.035181 0.243942 0.095801 -0.018325 0.054188
feat_84 0.049634 0.009845 0.011159 5.684499e-03 0.467329 0.177777 0.062634 0.005064 -0.013569 0.017939 0.017724 0.009807 0.023221 -0.027058 -0.009311 0.035211 0.000334 0.028752 -2.846741e-03 0.001723 -0.004702 0.041519 0.011832 0.091092 -0.018320 ... -0.007221 0.045636 0.011858 -0.011992 0.012885 0.028021 0.028478 0.031277 0.001243 0.035861 0.002540 0.029430 0.096658 0.054646 -0.001047 1.000000 -0.010210 -0.003459 0.013631 -0.017903 0.103643 -0.006013 -0.003444 0.048431 0.003723
feat_85 -0.008739 -0.006764 -0.048626 -3.315343e-02 0.034062 0.004290 0.037874 -0.003416 -0.031462 0.086758 -0.074293 0.019283 0.002594 -0.021455 0.246847 0.110850 0.015559 -0.001555 -8.292391e-03 0.084570 -0.006180 0.044396 0.056994 -0.018990 0.021119 ... -0.006954 0.361941 0.013894 0.294384 -0.010675 -0.000453 -0.026329 0.000682 0.005602 0.004071 0.004663 -0.035876 0.054972 -0.034368 -0.009157 -0.010210 1.000000 0.109643 0.049250 0.027886 0.053582 -0.003931 -0.023091 -0.043484 0.023390
feat_86 0.107947 -0.039090 -0.096093 -7.102916e-02 0.013879 0.010455 -0.009169 -0.029395 -0.019144 0.159447 -0.123339 -0.007214 0.004850 0.145787 -0.002529 0.003610 0.049102 -0.029295 -1.455986e-02 0.016850 -0.045562 -0.018347 0.121170 0.015444 0.263924 ... -0.025538 0.225792 -0.015410 0.008897 -0.000841 -0.015945 -0.031401 0.010324 0.020294 -0.018797 0.095254 -0.081888 0.013808 -0.065189 -0.029711 -0.003459 0.109643 1.000000 0.073685 0.426972 -0.011822 -0.019803 -0.024005 -0.049393 0.029035
feat_87 0.089374 0.047451 -0.009838 5.054728e-03 0.013999 0.015256 0.089574 0.059929 -0.016925 0.077421 -0.032969 0.016089 0.093870 -0.020229 -0.023191 0.077770 0.214221 0.126886 4.116324e-04 0.220475 -0.016862 0.219974 0.111837 0.123298 -0.011294 ... 0.027690 0.212133 0.060004 0.013536 -0.004759 0.003992 0.001201 0.063411 0.019275 0.063539 0.099579 -0.004588 0.084096 -0.012153 0.072006 0.013631 0.049250 0.073685 1.000000 0.023053 0.066008 0.014696 0.028850 0.001424 0.499990
feat_88 0.020830 -0.047035 -0.082336 -6.748367e-02 -0.019201 -0.015437 -0.033646 -0.050931 0.001160 0.054635 -0.114491 -0.024324 -0.036259 0.323089 0.010840 -0.007257 -0.034139 -0.035981 -1.848491e-02 0.004081 -0.030401 -0.045439 -0.014039 -0.043479 0.207974 ... -0.022918 0.140850 -0.048676 0.004066 -0.026363 -0.025207 -0.058630 -0.050417 -0.007396 -0.030010 -0.018615 -0.076250 -0.017469 -0.059553 -0.052930 -0.017903 0.027886 0.426972 0.023053 1.000000 -0.022552 -0.031679 -0.033653 -0.070120 -0.008631
feat_89 0.096851 0.105527 0.174781 1.837145e-01 0.119951 0.035042 0.063511 0.007974 -0.019147 0.061498 0.137374 0.082220 0.062990 -0.038881 0.029547 0.248364 0.035390 0.247462 1.111595e-02 0.111231 0.105392 0.244779 0.059743 0.023581 -0.012866 ... 0.011806 0.163631 0.076348 0.057040 -0.006704 0.042104 -0.014925 0.023242 0.021591 0.014639 0.073207 0.350787 0.166234 0.266249 0.035181 0.103643 0.053582 -0.011822 0.066008 -0.022552 1.000000 0.027764 0.015917 0.129622 0.030650
feat_90 0.010310 0.515022 -0.015068 9.454061e-03 0.004842 0.054034 0.129578 0.026807 -0.020698 0.049908 0.045074 0.062721 0.107722 -0.060240 -0.046616 0.016863 0.045218 0.094336 4.509254e-01 0.370282 -0.033193 0.098595 0.141869 0.357270 -0.088187 ... 0.549489 0.074178 -0.019694 -0.030673 0.070001 0.055372 0.160418 0.291884 -0.004988 0.043339 0.031099 0.012623 0.009379 -0.001795 0.243942 -0.006013 -0.003931 -0.019803 0.014696 -0.031679 0.027764 1.000000 0.014812 -0.035311 0.039864
feat_91 0.037264 0.026383 -0.012417 -1.031241e-02 0.012012 0.012465 0.068506 0.095990 -0.014742 0.024025 -0.029511 0.063965 0.044338 -0.038444 -0.034402 0.048494 0.088508 0.037275 4.085393e-03 0.079181 -0.019779 0.104921 0.010438 0.090833 -0.045759 ... 0.041206 0.030560 0.050622 -0.008936 0.007193 0.016941 -0.002625 0.175163 0.026376 0.068450 0.021616 -0.017815 0.017243 -0.014641 0.095801 -0.003444 -0.023091 -0.024005 0.028850 -0.033653 0.015917 0.014812 1.000000 0.104226 -0.000045
feat_92 0.054777 -0.008219 0.066921 8.763105e-02 0.065331 0.015479 -0.032261 0.013608 -0.069707 -0.006869 0.013179 0.063922 0.071953 -0.040133 -0.018206 0.210499 -0.006538 0.126640 -2.766153e-02 -0.018715 0.058008 0.200593 -0.031837 -0.024375 0.030135 ... -0.037961 0.007310 0.000368 0.005300 -0.024017 0.004497 -0.037710 -0.050887 0.076551 -0.028596 0.162033 0.063401 0.018565 0.049661 -0.018325 0.048431 -0.043484 -0.049393 0.001424 -0.070120 0.129622 -0.035311 0.104226 1.000000 -0.003653
feat_93 0.081783 0.054593 0.006814 1.574563e-02 0.002038 0.008521 0.034912 0.005131 -0.006038 0.041316 0.003326 0.012722 0.038989 -0.018127 -0.020369 0.031467 0.056695 0.058100 1.424267e-02 0.110054 -0.007677 0.113276 0.084945 0.089200 -0.015708 ... 0.032052 0.093488 0.002001 -0.008233 -0.000163 0.021967 0.006208 0.029426 0.001715 0.016047 0.029082 0.012651 0.019378 0.005497 0.054188 0.003723 0.023390 0.029035 0.499990 -0.008631 0.030650 0.039864 -0.000045 -0.003653 1.000000

93 rows × 93 columns


In [12]:
sns.heatmap(cor_mat)


Out[12]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fec10356c50>

In [13]:
#to have a better look we need to increase the plot area
f, ax = plt.subplots(figsize=(20,17))
sns.heatmap(cor_mat,vmax=0.8,square=True)


Out[13]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fec0d85b780>

we would also like to explore the correlation with the target variable but it has a character type so let's convert it into a numerical feature


In [14]:
tr_data['parsed_target'] = [int(n.split('_')[1]) for n in tr_data.target]
tr_data.drop('target',axis=1,inplace=True)
f, ax = plt.subplots(figsize=(20,17))
cor_mat = tr_data.iloc[:,1:].corr()
sns.heatmap(cor_mat,vmax=0.8,square=True)


Out[14]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fec0ff11fd0>

In [15]:
f, ax = plt.subplots(figsize = (20,5))
cor_mat.iloc[:-1,-1].plot(kind = 'bar')


Out[15]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fec0f441ba8>

we can notice some features with weak positive corelation with the target and some others with moderate negative correlation


In [16]:
def target_bar_plots(dat,cols = 4, rows = 4):
    _,ax = plt.subplots(rows,cols,sharey='row',sharex='col',figsize = (cols*5,rows*5))
    for i,feat in enumerate(dat.columns[:(rows*cols)]):
        try:
            dat.pivot_table(index=['parsed_target'],values=dat.columns[i],aggfunc=np.count_nonzero).plot(
                kind = 'bar',color=my_color_map ,ax=ax[int(i/cols), int(i%cols)],title = 
                'non_zero values by category for {}'.format(feat))
        except: 
            pass

target_bar_plots(tr_data,4,24)


while examining these plots we can already make some assumptions

as to which categories will be easier to predict and which will be the harder ones - can you guess?

now lets look at the test set features and check if they resemble the train features


In [17]:
tr_data['source'] = 'train'
te_data['source'] = 'test'
all_data = pd.concat([tr_data,te_data],axis=0)
tr_data.drop('source',axis=1,inplace=True)
te_data.drop('source',axis=1,inplace=True)

In [18]:
[x for x in all_data.columns[1:7]]


Out[18]:
['feat_10', 'feat_11', 'feat_12', 'feat_13', 'feat_14', 'feat_15']

In [19]:
molten = pd.melt(all_data, id_vars = 'source',value_vars = ['feat_'+str(x) for x in range(13,15)])
plt.subplots(figsize = (20,8))
sns.violinplot(data=molten, x= 'variable',y='value',hue='source',split = True,palette=my_color_map)


Out[19]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fec04711080>

In [20]:
from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(tr_data.iloc[:,1:-1],tr_data.parsed_target,test_size = 0.2,random_state =12345)

In [22]:
%%time
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
knn = KNeighborsClassifier(n_jobs=4,n_neighbors=4)
knn.fit(X_train,y_train)
knn4_pred = knn.predict(X_val)
print(confusion_matrix(y_pred=knn4_pred,y_true=y_val))
sns.heatmap(xticklabels=range(1,10),yticklabels=range(1,10),data = confusion_matrix(y_pred=knn4_pred,y_true=y_val),cmap='Greens')


[[ 247   20    3    2    3   20    9   34   72]
 [   5 2723  413   47    6    4   15    5    4]
 [   1  817  663   41    1    1   21    4    1]
 [   3  225  126  169    8   11   13    1    1]
 [   1   11    3    0  520    0    0    0    0]
 [  34   29    7    6    2 2652   32   28   20]
 [  31   80   55   10    4   37  300   18    3]
 [  51   21    8    0    2   60   24 1496   33]
 [  71   27    6    2    4   32    2   36  879]]
Out[22]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fec156f76a0>

as we can see our assamption was indeed correct - categories 6,8 and 2 are those easiest to predict


In [23]:
from sklearn.metrics import classification_report
print('classification report results:\r\n' + classification_report(y_pred=knn4_pred,y_true=y_val))


classification report results:
             precision    recall  f1-score   support

          1       0.56      0.60      0.58       410
          2       0.69      0.85      0.76      3222
          3       0.52      0.43      0.47      1550
          4       0.61      0.30      0.41       557
          5       0.95      0.97      0.96       535
          6       0.94      0.94      0.94      2810
          7       0.72      0.56      0.63       538
          8       0.92      0.88      0.90      1695
          9       0.87      0.83      0.85      1059

avg / total       0.78      0.78      0.77     12376


In [48]:
%%time

#this will give higher importance to successfully classifying the 4th class items
class_weights = {1:8,2:1,3:2,4:5,5:5,6:1,7:5,8:2,9:3}

from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(class_weight=class_weights,max_depth=100,max_features=92,min_samples_split=2,random_state=12345)
dtc.fit(X_train,y_train)
tree_pred = dtc.predict(X_val)
print(confusion_matrix(y_pred=tree_pred,y_true=y_val))
sns.heatmap(confusion_matrix(y_pred=tree_pred,y_true=y_val),cmap='Greens',xticklabels=range(1,10),yticklabels=range(1,10))
print('classification report results:\r\n' + classification_report(y_pred=tree_pred,y_true=y_val))


[[ 168   25    9    2    2   46   19   64   75]
 [  13 2213  665  179    9   25   59   28   31]
 [   8  589  741  117    3   12   51   19   10]
 [   4  159  101  242    3   19   18    8    3]
 [   0    9    1    3  516    1    2    2    1]
 [  34   39   17   25    2 2480   58   89   66]
 [  20   50   55   30    1   64  274   32   12]
 [  71   30   20    2    9  118   40 1329   76]
 [  90   45   21   14    1   61   18   71  738]]
classification report results:
             precision    recall  f1-score   support

          1       0.41      0.41      0.41       410
          2       0.70      0.69      0.69      3222
          3       0.45      0.48      0.47      1550
          4       0.39      0.43      0.41       557
          5       0.95      0.96      0.95       535
          6       0.88      0.88      0.88      2810
          7       0.51      0.51      0.51       538
          8       0.81      0.78      0.80      1695
          9       0.73      0.70      0.71      1059

avg / total       0.71      0.70      0.70     12376

CPU times: user 2.22 s, sys: 100 ms, total: 2.32 s
Wall time: 2.21 s

lets see if support vector machines will do any better


In [24]:
from sklearn.svm import SVC
svc = SVC(kernel='linear',C=0.1,max_iter=100,random_state=12345)
svc.fit(X_train,y_train)
svc_pred = svc.predict(X_val)
print(confusion_matrix(y_pred=svc_pred,y_true=y_val))
sns.heatmap(confusion_matrix(y_pred=svc_pred,y_true=y_val),cmap='Greens',xticklabels=range(1,10),
            yticklabels=range(1,10))
print('classification report results:\r\n' + classification_report(y_pred=svc_pred,y_true=y_val))


/opt/conda/lib/python3.6/site-packages/sklearn/svm/base.py:218: ConvergenceWarning: Solver terminated early (max_iter=100).  Consider pre-processing your data with StandardScaler or MinMaxScaler.
  % self.max_iter, ConvergenceWarning)
[[  41    2    0    2    2   21   11   46  285]
 [   8  704  235 1045  451  125  176   30  448]
 [   3  390  178  454  161   85  132   20  127]
 [   1  112   28  225   50   37   34    0   70]
 [   0    5    0    2  524    1    0    0    3]
 [  36   16    7  187    1 1522  131   21  889]
 [  57   30   29   27    5   66  162   12  150]
 [ 151   98   14    2    2  112   92  558  666]
 [  88    0    3    4    3   32    6   17  906]]
classification report results:
             precision    recall  f1-score   support

          1       0.11      0.10      0.10       410
          2       0.52      0.22      0.31      3222
          3       0.36      0.11      0.17      1550
          4       0.12      0.40      0.18       557
          5       0.44      0.98      0.60       535
          6       0.76      0.54      0.63      2810
          7       0.22      0.30      0.25       538
          8       0.79      0.33      0.47      1695
          9       0.26      0.86      0.39      1059

avg / total       0.52      0.39      0.39     12376


In [26]:
from sklearn.preprocessing import MinMaxScaler
svc = SVC(kernel='linear',C=0.1,max_iter=10000,random_state=12345)
mms = MinMaxScaler()
mms.fit(X_train)
X_train_scaled = mms.transform(X_train)
X_val_scaled = mms.transform(X_val)
svc.fit(X_train_scaled,y_train)
svc_pred = svc.predict(X_val_scaled)
print(confusion_matrix(y_pred=svc_pred,y_true=y_val))
sns.heatmap(confusion_matrix(y_pred=svc_pred,y_true=y_val),cmap='Greens',xticklabels=range(1,10),
            yticklabels=range(1,10))
print('classification report results:\r\n' + classification_report(y_pred=svc_pred,y_true=y_val))


[[  15   32    0    0    0   27    1  242   93]
 [   0 3086   51    0   38    8    4   30    5]
 [   0 1381  117    0   19    3    7   19    4]
 [   0  485   30   10    6   17    6    3    0]
 [   0   44    0    0  487    0    0    4    0]
 [   1   70    1    0    0 2581   17  117   23]
 [   0  179   13    0    1   36  152  154    3]
 [   2   44    0    0    3   43    2 1579   22]
 [   3   79    0    0    0   41    0  157  779]]
classification report results:
             precision    recall  f1-score   support

          1       0.71      0.04      0.07       410
          2       0.57      0.96      0.72      3222
          3       0.55      0.08      0.13      1550
          4       1.00      0.02      0.04       557
          5       0.88      0.91      0.89       535
          6       0.94      0.92      0.93      2810
          7       0.80      0.28      0.42       538
          8       0.69      0.93      0.79      1695
          9       0.84      0.74      0.78      1059

avg / total       0.74      0.71      0.65     12376

we can see that we get less accurate results on the whole,

but we achieved better results for the class we selected to be more important

lets try ensamble learning - we'll start with random forest


In [49]:
%%time
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_jobs=4,n_estimators=100)
rfc.fit(X_train,y_train)
rfc_pred = rfc.predict(X_val)
print(confusion_matrix(y_pred=rfc_pred,y_true=y_val))
sns.heatmap(confusion_matrix(y_pred=rfc_pred,y_true=y_val),cmap='Greens',xticklabels=range(1,10),yticklabels=range(1,10))
print('classification report results:\r\n' + classification_report(y_pred=rfc_pred,y_true=y_val))


[[ 160   14    1    0    0   35   10   93   97]
 [   0 2846  334   10    5    6    9    5    7]
 [   0  727  778   17    0    4   14    8    2]
 [   1  213   74  234    3   19   10    3    0]
 [   0    9    1    0  523    1    0    0    1]
 [   3   26    2    3    1 2701   26   33   15]
 [   6   72   44    5    4   44  316   40    7]
 [  10   11    4    0    2   50    8 1588   22]
 [  24   26    2    0    2   32    3   37  933]]
classification report results:
             precision    recall  f1-score   support

          1       0.78      0.39      0.52       410
          2       0.72      0.88      0.79      3222
          3       0.63      0.50      0.56      1550
          4       0.87      0.42      0.57       557
          5       0.97      0.98      0.97       535
          6       0.93      0.96      0.95      2810
          7       0.80      0.59      0.68       538
          8       0.88      0.94      0.91      1695
          9       0.86      0.88      0.87      1059

avg / total       0.81      0.81      0.80     12376

CPU times: user 20.4 s, sys: 316 ms, total: 20.7 s
Wall time: 6.16 s

yes!

rf model got highest score so far with no special effort just applying fit - predict

let's check if gradient boosting can further improve on that


In [ ]:
%%time
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassifier(n_estimators=100,max_depth=6)
gbc.fit(X_train,y_train)
gbc_pred = gbc.predict(X_val)
print(confusion_matrix(y_pred=gbc_pred,y_true=y_val))
sns.heatmap(confusion_matrix(y_pred=gbc_pred,y_true=y_val),cmap='Greens',xticklabels=range(1,10),yticklabels=range(1,10))
print('classification report results:\r\n' + classification_report(y_pred=gbc_pred,y_true=y_val))

In [60]:
%%time
import xgboost as xgb

dtrain = xgb.DMatrix(data=X_train,label=y_train-1) #xgb classes starts from zero
dval = xgb.DMatrix(data=X_val,label=y_val-1) #xgb classes starts from zero
watchlist = [(dval,'eval'), (dtrain,'train')]

xgb_params = {
    'eta': 0.05,
    'max_depth': 7,
    'subsample': 0.9,
    'colsample_bytree': 0.9,
    'colsample_bylevel': 0.7,
    'alpha':0.1,
    #'objective': 'binary:logistic',
    'objective': 'multi:softmax',
    #'eval_metric': 'auc',
    'eval_metric': 'mlogloss',
    'watchlist':watchlist,
    'print_every_n':5,
    'min_child_weight':2,
    'num_class' : 9
}

bst = xgb.train(params=xgb_params,dtrain=dtrain,num_boost_round=400)
xgb_pred = bst.predict(dval)
print(confusion_matrix(y_pred=xgb_pred,y_true=y_val))
sns.heatmap(confusion_matrix(y_pred=xgb_pred+1,y_true=y_val),cmap='Greens',xticklabels=range(1,10),yticklabels=range(1,10))
print('classification report results:\r\n' + classification_report(y_pred=xgb_pred+1,y_true=y_val))


[[   0    0    0    0    0    0    0    0    0    0]
 [ 208   12    3    0    1   30   11   58   87    0]
 [   3 2779  373   25    8    4   16    9    5    0]
 [   0  674  811   19    0    2   33    7    4    0]
 [   1  164   80  274    5   16   13    3    1    0]
 [   0    7    5    0  523    0    0    0    0    0]
 [  11   20    3    6    0 2689   29   31   21    0]
 [   8   63   37    6    0   31  375   17    1    0]
 [  23    9    6    0    2   44   15 1576   20    0]
 [  36   22    1    1    0   27    6   32  934    0]]
classification report results:
             precision    recall  f1-score   support

          1       0.72      0.51      0.59       410
          2       0.74      0.86      0.80      3222
          3       0.61      0.52      0.57      1550
          4       0.83      0.49      0.62       557
          5       0.97      0.98      0.97       535
          6       0.95      0.96      0.95      2810
          7       0.75      0.70      0.72       538
          8       0.91      0.93      0.92      1695
          9       0.87      0.88      0.88      1059

avg / total       0.82      0.82      0.82     12376

CPU times: user 23min 53s, sys: 6.14 s, total: 23min 59s
Wall time: 6min 15s

wow! we got an average F1 score of 82% this looks great!

lets predict the results on the test set using the gradient boosting model and create a submission to the kaggle platform


In [61]:
xgb_params = {
    'eta': 0.05,
    'max_depth': 7,
    'subsample': 0.9,
    'colsample_bytree': 0.9,
    'colsample_bylevel': 0.7,
    'alpha':0.1,
    #'objective': 'binary:logistic',
    'objective': 'multi:softprob',
    #'eval_metric': 'auc',
    'eval_metric': 'mlogloss',
    'watchlist':watchlist,
    'print_every_n':5,
    'min_child_weight':2,
    'num_class' : 9
}

bst = xgb.train(params=xgb_params,dtrain=dtrain,num_boost_round=400)

In [62]:
test_pred = bst.predict(xgb.DMatrix(te_data.iloc[:,1:]))

In [63]:



Out[63]:
array([[  3.32776515e-04,   1.74447030e-01,   1.35695562e-01, ...,
          7.60735199e-03,   7.34019326e-04,   1.29689695e-04],
       [  3.07031139e-03,   1.89991444e-02,   4.14931448e-03, ...,
          7.95385800e-03,   3.11259240e-01,   3.43891024e-03],
       [  2.37065815e-05,   1.59545380e-05,   2.23141742e-05, ...,
          6.22077860e-05,   4.30120475e-04,   4.70685372e-05],
       ..., 
       [  9.02672589e-04,   6.33337677e-01,   2.00326040e-01, ...,
          7.59304920e-03,   9.46243177e-04,   2.25924829e-04],
       [  1.85424651e-04,   2.50830024e-01,   1.83459725e-02, ...,
          5.72313787e-04,   7.65306395e-05,   1.91406361e-05],
       [  2.67061463e-04,   5.12850702e-01,   3.88109177e-01, ...,
          6.27091229e-02,   4.30107088e-04,   2.92594137e-04]], dtype=float32)

In [64]:
subm = pd.DataFrame(test_pred)
subm.columns = ['class_'+ str(x) for x in range(1,10)]
subm.index = te_data.id
subm.to_csv('../subm/xgboost_classification_submission.csv')

In [65]:
#lets make sure our prediction fits the desired format:
print(subm.head())
print('submission shape: {}'.format(subm.shape))
print('')
print("great! we're good to go on and submit our results")


     class_1   class_2   class_3   class_4       class_5   class_6   class_7  \
id                                                                             
1   0.000333  0.174447  0.135696  0.680417  5.881051e-05  0.000578  0.007607   
2   0.003070  0.018999  0.004149  0.001198  7.166839e-04  0.649215  0.007954   
3   0.000024  0.000016  0.000022  0.000020  9.076740e-07  0.999378  0.000062   
4   0.000733  0.642544  0.336534  0.016710  7.275416e-05  0.000394  0.000547   
5   0.140267  0.000839  0.001343  0.000334  6.410003e-04  0.011988  0.004103   

     class_8   class_9  
id                      
1   0.000734  0.000130  
2   0.311259  0.003439  
3   0.000430  0.000047  
4   0.000463  0.002003  
5   0.230982  0.609502  
submission shape: (144368, 9)

great! we're good to go on and submit our results

home assignment:

  • go over the things we learned
  • write down terms which are not clear to you - and try to find your answers online
  • try to write the code yourself rather than just pressing ctrl+enter
  • improve the initial results that we got on class
    • you can use the kaggle forums to check what other participants have done through the competition
    • think how can we further extract value from the plots we have made
    • you can try and improve one or more of the parameters that we learned about
    • try and combine more than one model (average/weighted average etc.)
  • select a dataset that interests you and create 2-3 plots that show something interesting about it